{"title":"通过单细胞 RNA 测序鉴定喉鳞状细胞癌中癌症干细胞的特征","authors":"Yanguo Li, Chen Lin, Yidian Chu, Zhengyu Wei, Qi Ding, Shanshan Gu, Hongxia Deng, Qi Liao, Zhisen Shen","doi":"10.1093/gpbjnl/qzae056","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer stem cells (CSCs) constitute a pivotal element within the tumor microenvironment (TME), driving the initiation and progression of cancer. However, the identification of CSCs and their underlying molecular mechanisms in laryngeal squamous cell carcinoma (LSCC) remains a formidable challenge. Here, we employed single-cell RNA sequencing of matched primary tumor tissues, paracancerous tissues, and local lymph nodes from three LSCC patients to comprehensively characterize the CSCs in LSCC. Two distinct clusters of stem cells originating from epithelial populations were delineated and verified as CSCs and normal stem cells (NSCs), respectively. CSCs were abundant in the paracancerous tissues compared to those in the tumor tissues. CSCs showed high expression of stem cell marker genes such as PROM1, ALDH1A1, and SOX4, and increased the activity of tumor-related hypoxia, Wnt/β-catenin, and Notch signaling pathways. We then explored the intricate crosstalk between CSCs and the TME cells and identified targets within the TME that related with CSCs. We also found eight marker genes of CSCs that were correlated significantly with the prognosis of LSCC patients. Furthermore, bioinformatics analyses showed that drugs such as erlotinib, OSI-027, and ibrutinib selectively targeted the CSC-specifically expressed genes. In conclusion, our results represent the first comprehensive characterization of CSC properties in LSCC at the single-cell level.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522873/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Cancer Stem Cells in Laryngeal Squamous Cell Carcinoma by Single-cell RNA Sequencing.\",\"authors\":\"Yanguo Li, Chen Lin, Yidian Chu, Zhengyu Wei, Qi Ding, Shanshan Gu, Hongxia Deng, Qi Liao, Zhisen Shen\",\"doi\":\"10.1093/gpbjnl/qzae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer stem cells (CSCs) constitute a pivotal element within the tumor microenvironment (TME), driving the initiation and progression of cancer. However, the identification of CSCs and their underlying molecular mechanisms in laryngeal squamous cell carcinoma (LSCC) remains a formidable challenge. Here, we employed single-cell RNA sequencing of matched primary tumor tissues, paracancerous tissues, and local lymph nodes from three LSCC patients to comprehensively characterize the CSCs in LSCC. Two distinct clusters of stem cells originating from epithelial populations were delineated and verified as CSCs and normal stem cells (NSCs), respectively. CSCs were abundant in the paracancerous tissues compared to those in the tumor tissues. CSCs showed high expression of stem cell marker genes such as PROM1, ALDH1A1, and SOX4, and increased the activity of tumor-related hypoxia, Wnt/β-catenin, and Notch signaling pathways. We then explored the intricate crosstalk between CSCs and the TME cells and identified targets within the TME that related with CSCs. We also found eight marker genes of CSCs that were correlated significantly with the prognosis of LSCC patients. Furthermore, bioinformatics analyses showed that drugs such as erlotinib, OSI-027, and ibrutinib selectively targeted the CSC-specifically expressed genes. In conclusion, our results represent the first comprehensive characterization of CSC properties in LSCC at the single-cell level.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Cancer Stem Cells in Laryngeal Squamous Cell Carcinoma by Single-cell RNA Sequencing.
Cancer stem cells (CSCs) constitute a pivotal element within the tumor microenvironment (TME), driving the initiation and progression of cancer. However, the identification of CSCs and their underlying molecular mechanisms in laryngeal squamous cell carcinoma (LSCC) remains a formidable challenge. Here, we employed single-cell RNA sequencing of matched primary tumor tissues, paracancerous tissues, and local lymph nodes from three LSCC patients to comprehensively characterize the CSCs in LSCC. Two distinct clusters of stem cells originating from epithelial populations were delineated and verified as CSCs and normal stem cells (NSCs), respectively. CSCs were abundant in the paracancerous tissues compared to those in the tumor tissues. CSCs showed high expression of stem cell marker genes such as PROM1, ALDH1A1, and SOX4, and increased the activity of tumor-related hypoxia, Wnt/β-catenin, and Notch signaling pathways. We then explored the intricate crosstalk between CSCs and the TME cells and identified targets within the TME that related with CSCs. We also found eight marker genes of CSCs that were correlated significantly with the prognosis of LSCC patients. Furthermore, bioinformatics analyses showed that drugs such as erlotinib, OSI-027, and ibrutinib selectively targeted the CSC-specifically expressed genes. In conclusion, our results represent the first comprehensive characterization of CSC properties in LSCC at the single-cell level.