不确定性和负反馈回路在诱导免疫防御进化中的作用。

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Danial Asgari, Alexander J Stewart, Richard P Meisel
{"title":"不确定性和负反馈回路在诱导免疫防御进化中的作用。","authors":"Danial Asgari, Alexander J Stewart, Richard P Meisel","doi":"10.1093/g3journal/jkae182","DOIUrl":null,"url":null,"abstract":"<p><p>Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457078/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of uncertainty and negative feedback loops in the evolution of induced immune defenses.\",\"authors\":\"Danial Asgari, Alexander J Stewart, Richard P Meisel\",\"doi\":\"10.1093/g3journal/jkae182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457078/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae182\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae182","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

生物利用组成型或诱导型防御系统来抵御病原体和其他外部威胁。组成型防御系统持续开启,而诱导型防御系统则在需要时启动。每种策略都有成本和收益,这可能会影响应对病原体的防御类型。此外,诱导防御通常受到多种负反馈机制的调节,以防止免疫反应过度激活。然而,目前还不清楚负反馈如何影响诱导反应的成本、收益和进化。为了填补这一空白,我们建立了一个具有良好特征的黑腹果蝇免疫信号网络的机理模型,其中包括三种独立的负反馈机制,作为诱导反应突变级调控这一普遍现象的代表。我们的研究表明,在随机的蝇菌相遇情况下,当细菌相遇很少或不确定时,诱导性防御会受到青睐,但其方式取决于细菌的增殖率。我们的模型还预测,优化诱导反应的特定负调控因子取决于细菌增殖率,从而将负反馈机制与有利于诱导的因素联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of uncertainty and negative feedback loops in the evolution of induced immune defenses.

Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信