{"title":"引力粒子产生对希格斯门户暗物质的影响","authors":"Soichiro Izumine and Kazunori Nakayama","doi":"10.1088/1475-7516/2024/08/002","DOIUrl":null,"url":null,"abstract":"The gravitational interaction is ubiquitous and the effect of gravitational particle production necessarily contributes to the dark matter abundance. A simple candidate of dark matter is a scalar particle, whose only renormalizable interaction is the Higgs portal coupling. We show that the abundance of Higgs portal dark matter is significantly affected by the gravitational production effect. In particular, the gravitational production from the coherently oscillating inflaton field during the reheating often gives dominant contribution.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of gravitational particle production on Higgs portal dark matter\",\"authors\":\"Soichiro Izumine and Kazunori Nakayama\",\"doi\":\"10.1088/1475-7516/2024/08/002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gravitational interaction is ubiquitous and the effect of gravitational particle production necessarily contributes to the dark matter abundance. A simple candidate of dark matter is a scalar particle, whose only renormalizable interaction is the Higgs portal coupling. We show that the abundance of Higgs portal dark matter is significantly affected by the gravitational production effect. In particular, the gravitational production from the coherently oscillating inflaton field during the reheating often gives dominant contribution.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/08/002\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/08/002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Effects of gravitational particle production on Higgs portal dark matter
The gravitational interaction is ubiquitous and the effect of gravitational particle production necessarily contributes to the dark matter abundance. A simple candidate of dark matter is a scalar particle, whose only renormalizable interaction is the Higgs portal coupling. We show that the abundance of Higgs portal dark matter is significantly affected by the gravitational production effect. In particular, the gravitational production from the coherently oscillating inflaton field during the reheating often gives dominant contribution.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.