Pablo Ramírez-Espinosa;David Morales-Jimenez;Kai-Kit Wong
{"title":"流体天线系统的新型空间块相关模型","authors":"Pablo Ramírez-Espinosa;David Morales-Jimenez;Kai-Kit Wong","doi":"10.1109/TWC.2024.3434509","DOIUrl":null,"url":null,"abstract":"Powered by position-flexible antennas, the emerging fluid antenna system (FAS) technology is postulated as a key enabler for massive connectivity in 6G networks. The free movement of antenna elements enables the opportunistic minimization of interference, allowing several users to share the same radio channel without the need of precoding. However, the true potential of FAS is still unknown due to the extremely high spatial correlation of the wireless channel between very close-by antenna positions. To unveil the multiplexing capabilities of FAS, proper (simple yet accurate) modeling of the spatial correlation is prominently needed. Realistic classical models such as Jakes’s are prohibitively complex, rendering intractable analyses, while state-of-the-art approximations often are too simplistic and poorly accurate. Aiming to fill this gap, we here propose a general framework to approximate spatial correlation by block-diagonal matrices, motivated by the well-known block fading assumption and by statistical results on large correlation matrices. The proposed block-correlation model makes the performance analysis possible, and tightly approximates the results obtained with realistic models (Jakes’s and Clarke’s). Our framework is leveraged to analyze fluid antenna multiple access (FAMA) systems, evaluating their performance for both one- and two-dimensional fluid antennas.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"23 11","pages":"15829-15843"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623405","citationCount":"0","resultStr":"{\"title\":\"A New Spatial Block-Correlation Model for Fluid Antenna Systems\",\"authors\":\"Pablo Ramírez-Espinosa;David Morales-Jimenez;Kai-Kit Wong\",\"doi\":\"10.1109/TWC.2024.3434509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Powered by position-flexible antennas, the emerging fluid antenna system (FAS) technology is postulated as a key enabler for massive connectivity in 6G networks. The free movement of antenna elements enables the opportunistic minimization of interference, allowing several users to share the same radio channel without the need of precoding. However, the true potential of FAS is still unknown due to the extremely high spatial correlation of the wireless channel between very close-by antenna positions. To unveil the multiplexing capabilities of FAS, proper (simple yet accurate) modeling of the spatial correlation is prominently needed. Realistic classical models such as Jakes’s are prohibitively complex, rendering intractable analyses, while state-of-the-art approximations often are too simplistic and poorly accurate. Aiming to fill this gap, we here propose a general framework to approximate spatial correlation by block-diagonal matrices, motivated by the well-known block fading assumption and by statistical results on large correlation matrices. The proposed block-correlation model makes the performance analysis possible, and tightly approximates the results obtained with realistic models (Jakes’s and Clarke’s). Our framework is leveraged to analyze fluid antenna multiple access (FAMA) systems, evaluating their performance for both one- and two-dimensional fluid antennas.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"23 11\",\"pages\":\"15829-15843\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623405\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10623405/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10623405/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A New Spatial Block-Correlation Model for Fluid Antenna Systems
Powered by position-flexible antennas, the emerging fluid antenna system (FAS) technology is postulated as a key enabler for massive connectivity in 6G networks. The free movement of antenna elements enables the opportunistic minimization of interference, allowing several users to share the same radio channel without the need of precoding. However, the true potential of FAS is still unknown due to the extremely high spatial correlation of the wireless channel between very close-by antenna positions. To unveil the multiplexing capabilities of FAS, proper (simple yet accurate) modeling of the spatial correlation is prominently needed. Realistic classical models such as Jakes’s are prohibitively complex, rendering intractable analyses, while state-of-the-art approximations often are too simplistic and poorly accurate. Aiming to fill this gap, we here propose a general framework to approximate spatial correlation by block-diagonal matrices, motivated by the well-known block fading assumption and by statistical results on large correlation matrices. The proposed block-correlation model makes the performance analysis possible, and tightly approximates the results obtained with realistic models (Jakes’s and Clarke’s). Our framework is leveraged to analyze fluid antenna multiple access (FAMA) systems, evaluating their performance for both one- and two-dimensional fluid antennas.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.