具有组合非线性且无强制条件的分数哈密顿系统解的多重性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mohsen Timoumi
{"title":"具有组合非线性且无强制条件的分数哈密顿系统解的多重性","authors":"Mohsen Timoumi","doi":"10.1007/s13540-024-00320-1","DOIUrl":null,"url":null,"abstract":"<p>Consider the following fractional Hamiltonian system: </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} _{t}D_{\\infty }^{\\alpha }(_{-\\infty }D_{t}^{\\alpha }u)(t)+L(t)u(t)=\\nabla W(t,u(t)),\\ t\\in \\mathbb {R}\\\\ u\\in H^{\\alpha }(\\mathbb {R}). \\end{array}\\right. \\end{aligned}$$</span><p>Here, <span>\\(_{t}D_{\\infty }^{\\alpha }\\)</span> and <span>\\(_{-\\infty }D_{t}^{\\alpha }\\)</span> represent the Liouville-Weyl fractional derivatives of order <span>\\(\\frac{1}{2}&lt; \\alpha &lt; 1\\)</span>, <span>\\(L \\in C(\\mathbb {R}, \\mathbb {R}^{N^2})\\)</span> is a symmetric matrix, and <span>\\(W \\in C^{1}(\\mathbb {R} \\times \\mathbb {R}^N, \\mathbb {R})\\)</span>. By applying the Fountain Theorem and the Dual Fountain Theorem, we demonstrate that this system admits two distinct sequences of solutions under the condition that <i>L</i> meets a new non-coercive criterion, and the potential <i>W</i>(<i>t</i>, <i>x</i>) exhibits combined nonlinearities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity of solutions for fractional Hamiltonian systems with combined nonlinearities and without coercive conditions\",\"authors\":\"Mohsen Timoumi\",\"doi\":\"10.1007/s13540-024-00320-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider the following fractional Hamiltonian system: </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{l} _{t}D_{\\\\infty }^{\\\\alpha }(_{-\\\\infty }D_{t}^{\\\\alpha }u)(t)+L(t)u(t)=\\\\nabla W(t,u(t)),\\\\ t\\\\in \\\\mathbb {R}\\\\\\\\ u\\\\in H^{\\\\alpha }(\\\\mathbb {R}). \\\\end{array}\\\\right. \\\\end{aligned}$$</span><p>Here, <span>\\\\(_{t}D_{\\\\infty }^{\\\\alpha }\\\\)</span> and <span>\\\\(_{-\\\\infty }D_{t}^{\\\\alpha }\\\\)</span> represent the Liouville-Weyl fractional derivatives of order <span>\\\\(\\\\frac{1}{2}&lt; \\\\alpha &lt; 1\\\\)</span>, <span>\\\\(L \\\\in C(\\\\mathbb {R}, \\\\mathbb {R}^{N^2})\\\\)</span> is a symmetric matrix, and <span>\\\\(W \\\\in C^{1}(\\\\mathbb {R} \\\\times \\\\mathbb {R}^N, \\\\mathbb {R})\\\\)</span>. By applying the Fountain Theorem and the Dual Fountain Theorem, we demonstrate that this system admits two distinct sequences of solutions under the condition that <i>L</i> meets a new non-coercive criterion, and the potential <i>W</i>(<i>t</i>, <i>x</i>) exhibits combined nonlinearities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00320-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00320-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

考虑以下分数哈密顿系统: $$\begin{aligned}\Left\{ \begin{array}{l}_{t}D_{\infty }^{\alpha }(_{-\infty }D_{t}^{\alpha }u)(t)+L(t)u(t)=\nabla W(t,u(t)),\ t\in \mathbb {R}\ u\in H^\{alpha }(\mathbb {R}).\end{array}\right.\end{aligned}$$在这里,\(_{t}D_{\infty }^{\alpha }\) 和\(_{-\infty }D_{t}^\{alpha }\) 表示阶数为\(\frac{1}{2}<;\1),(L (in C(\mathbb {R}, \mathbb {R}^{N^2})\) 是一个对称矩阵,(W (in C^{1}(\mathbb {R} \times \mathbb {R}^N, \mathbb {R})\)。通过应用福泉定理和二元福泉定理,我们证明了在 L 满足新的非强制准则,且势能 W(t, x) 呈现组合非线性的条件下,该系统允许两个不同的解序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiplicity of solutions for fractional Hamiltonian systems with combined nonlinearities and without coercive conditions

Multiplicity of solutions for fractional Hamiltonian systems with combined nonlinearities and without coercive conditions

Consider the following fractional Hamiltonian system:

$$\begin{aligned} \left\{ \begin{array}{l} _{t}D_{\infty }^{\alpha }(_{-\infty }D_{t}^{\alpha }u)(t)+L(t)u(t)=\nabla W(t,u(t)),\ t\in \mathbb {R}\\ u\in H^{\alpha }(\mathbb {R}). \end{array}\right. \end{aligned}$$

Here, \(_{t}D_{\infty }^{\alpha }\) and \(_{-\infty }D_{t}^{\alpha }\) represent the Liouville-Weyl fractional derivatives of order \(\frac{1}{2}< \alpha < 1\), \(L \in C(\mathbb {R}, \mathbb {R}^{N^2})\) is a symmetric matrix, and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^N, \mathbb {R})\). By applying the Fountain Theorem and the Dual Fountain Theorem, we demonstrate that this system admits two distinct sequences of solutions under the condition that L meets a new non-coercive criterion, and the potential W(tx) exhibits combined nonlinearities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信