DNA 结合因子足迹和增强子 RNA 识别功能性非编码基因变体

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Simon C. Biddie, Giovanna Weykopf, Elizabeth F. Hird, Elias T. Friman, Wendy A. Bickmore
{"title":"DNA 结合因子足迹和增强子 RNA 识别功能性非编码基因变体","authors":"Simon C. Biddie, Giovanna Weykopf, Elizabeth F. Hird, Elias T. Friman, Wendy A. Bickmore","doi":"10.1186/s13059-024-03352-1","DOIUrl":null,"url":null,"abstract":"Genome-wide association studies (GWAS) have revealed a multitude of candidate genetic variants affecting the risk of developing complex traits and diseases. However, the highlighted regions are typically in the non-coding genome, and uncovering the functional causative single nucleotide variants (SNVs) is challenging. Prioritization of variants is commonly based on genomic annotation with markers of active regulatory elements, but current approaches still poorly predict functional variants. To address this, we systematically analyze six markers of active regulatory elements for their ability to identify functional variants. We benchmark against molecular quantitative trait loci (molQTL) from assays of regulatory element activity that identify allelic effects on DNA-binding factor occupancy, reporter assay expression, and chromatin accessibility. We identify the combination of DNase footprints and divergent enhancer RNA (eRNA) as markers for functional variants. This signature provides high precision, but with a trade-off of low recall, thus substantially reducing candidate variant sets to prioritize variants for functional validation. We present this as a framework called FINDER—Functional SNV IdeNtification using DNase footprints and eRNA. We demonstrate the utility to prioritize variants using leukocyte count trait and analyze variants in linkage disequilibrium with a lead variant to predict a functional variant in asthma. Our findings have implications for prioritizing variants from GWAS, in development of predictive scoring algorithms, and for functionally informed fine mapping approaches.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"44 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA-binding factor footprints and enhancer RNAs identify functional non-coding genetic variants\",\"authors\":\"Simon C. Biddie, Giovanna Weykopf, Elizabeth F. Hird, Elias T. Friman, Wendy A. Bickmore\",\"doi\":\"10.1186/s13059-024-03352-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome-wide association studies (GWAS) have revealed a multitude of candidate genetic variants affecting the risk of developing complex traits and diseases. However, the highlighted regions are typically in the non-coding genome, and uncovering the functional causative single nucleotide variants (SNVs) is challenging. Prioritization of variants is commonly based on genomic annotation with markers of active regulatory elements, but current approaches still poorly predict functional variants. To address this, we systematically analyze six markers of active regulatory elements for their ability to identify functional variants. We benchmark against molecular quantitative trait loci (molQTL) from assays of regulatory element activity that identify allelic effects on DNA-binding factor occupancy, reporter assay expression, and chromatin accessibility. We identify the combination of DNase footprints and divergent enhancer RNA (eRNA) as markers for functional variants. This signature provides high precision, but with a trade-off of low recall, thus substantially reducing candidate variant sets to prioritize variants for functional validation. We present this as a framework called FINDER—Functional SNV IdeNtification using DNase footprints and eRNA. We demonstrate the utility to prioritize variants using leukocyte count trait and analyze variants in linkage disequilibrium with a lead variant to predict a functional variant in asthma. Our findings have implications for prioritizing variants from GWAS, in development of predictive scoring algorithms, and for functionally informed fine mapping approaches.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03352-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03352-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全基因组关联研究(GWAS)揭示了大量影响复杂性状和疾病发病风险的候选基因变异。然而,突出显示的区域通常位于非编码基因组中,发现功能性致病单核苷酸变异(SNVs)具有挑战性。变异的优先排序通常基于带有活性调控元件标记的基因组注释,但目前的方法仍然不能很好地预测功能性变异。为了解决这个问题,我们系统分析了六种活性调控元件标记物识别功能变异的能力。我们以分子定量性状位点(molQTL)为基准,通过对调控元件活性的检测,确定等位基因对 DNA 结合因子占有率、报告检测表达和染色质可及性的影响。我们将 DNase 脚印和不同的增强子 RNA (eRNA) 结合起来,作为功能变异的标记。这一特征提供了高精确度,但同时也牺牲了低召回率,从而大大减少了候选变异集,为功能验证确定了变异的优先次序。我们利用 DNase 脚印和 eRNA 将其作为一个名为 FINDER-Functional SNV IdeNtification 的框架。我们展示了利用白细胞计数性状对变异进行优先排序的实用性,并分析了与先导变异存在联系不平衡的变异,以预测哮喘中的功能变异。我们的研究结果对确定 GWAS 变异的优先次序、开发预测性评分算法以及功能性精细图谱方法都有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA-binding factor footprints and enhancer RNAs identify functional non-coding genetic variants
Genome-wide association studies (GWAS) have revealed a multitude of candidate genetic variants affecting the risk of developing complex traits and diseases. However, the highlighted regions are typically in the non-coding genome, and uncovering the functional causative single nucleotide variants (SNVs) is challenging. Prioritization of variants is commonly based on genomic annotation with markers of active regulatory elements, but current approaches still poorly predict functional variants. To address this, we systematically analyze six markers of active regulatory elements for their ability to identify functional variants. We benchmark against molecular quantitative trait loci (molQTL) from assays of regulatory element activity that identify allelic effects on DNA-binding factor occupancy, reporter assay expression, and chromatin accessibility. We identify the combination of DNase footprints and divergent enhancer RNA (eRNA) as markers for functional variants. This signature provides high precision, but with a trade-off of low recall, thus substantially reducing candidate variant sets to prioritize variants for functional validation. We present this as a framework called FINDER—Functional SNV IdeNtification using DNase footprints and eRNA. We demonstrate the utility to prioritize variants using leukocyte count trait and analyze variants in linkage disequilibrium with a lead variant to predict a functional variant in asthma. Our findings have implications for prioritizing variants from GWAS, in development of predictive scoring algorithms, and for functionally informed fine mapping approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信