参数椭圆特征值问题的解析和 Gevrey 类正则性及其应用

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Alexey Chernov, Tùng Lê
{"title":"参数椭圆特征值问题的解析和 Gevrey 类正则性及其应用","authors":"Alexey Chernov, Tùng Lê","doi":"10.1137/23m1596296","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1874-1900, August 2024. <br/> Abstract. We investigate a class of parametric elliptic eigenvalue problems with homogeneous essential boundary conditions, where the coefficients (and hence the solution) may depend on a parameter. For the efficient approximate evaluation of parameter sensitivities of the first eigenpairs on the entire parameter space we propose and analyze Gevrey class and analytic regularity of the solution with respect to the parameters. This is made possible by a novel proof technique, which we introduce and demonstrate in this paper. Our regularity result has immediate implications for convergence of various numerical schemes for parametric elliptic eigenvalue problems, in particular, for elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients, e.g., integration by quasi–Monte Carlo methods.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic and Gevrey Class Regularity for Parametric Elliptic Eigenvalue Problems and Applications\",\"authors\":\"Alexey Chernov, Tùng Lê\",\"doi\":\"10.1137/23m1596296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1874-1900, August 2024. <br/> Abstract. We investigate a class of parametric elliptic eigenvalue problems with homogeneous essential boundary conditions, where the coefficients (and hence the solution) may depend on a parameter. For the efficient approximate evaluation of parameter sensitivities of the first eigenpairs on the entire parameter space we propose and analyze Gevrey class and analytic regularity of the solution with respect to the parameters. This is made possible by a novel proof technique, which we introduce and demonstrate in this paper. Our regularity result has immediate implications for convergence of various numerical schemes for parametric elliptic eigenvalue problems, in particular, for elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients, e.g., integration by quasi–Monte Carlo methods.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1596296\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1596296","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 4 期第 1874-1900 页,2024 年 8 月。 摘要。我们研究了一类具有同质基本边界条件的参数椭圆特征值问题,其中的系数(以及解)可能取决于一个参数。为了在整个参数空间上有效地近似评估第一特征对的参数敏感性,我们提出并分析了 Gevrey 类以及解在参数方面的解析正则性。我们在本文中介绍并演示了一种新颖的证明技术。我们的正则性结果对于参数椭圆特征值问题的各种数值方案的收敛具有直接影响,特别是对于由具有随机系数的椭圆微分算子产生的具有无限多个参数的椭圆特征值问题,例如准蒙特卡罗方法的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic and Gevrey Class Regularity for Parametric Elliptic Eigenvalue Problems and Applications
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1874-1900, August 2024.
Abstract. We investigate a class of parametric elliptic eigenvalue problems with homogeneous essential boundary conditions, where the coefficients (and hence the solution) may depend on a parameter. For the efficient approximate evaluation of parameter sensitivities of the first eigenpairs on the entire parameter space we propose and analyze Gevrey class and analytic regularity of the solution with respect to the parameters. This is made possible by a novel proof technique, which we introduce and demonstrate in this paper. Our regularity result has immediate implications for convergence of various numerical schemes for parametric elliptic eigenvalue problems, in particular, for elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients, e.g., integration by quasi–Monte Carlo methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信