用于高质量估算体内侧向应变、固体应力和流体压力的新型透气造影法

Md Hadiur Rahman Khan, Raffaella Righetti
{"title":"用于高质量估算体内侧向应变、固体应力和流体压力的新型透气造影法","authors":"Md Hadiur Rahman Khan, Raffaella Righetti","doi":"10.1109/TMI.2024.3438564","DOIUrl":null,"url":null,"abstract":"<p><p>Assessment of mechanical and transport properties of tissues using ultrasound elasticity imaging requires accurate estimations of the spatiotemporal distribution of volumetric strain. Due to physical constraints such as pitch limitation and the lack of phase information in the lateral direction, the quality of lateral strain estimation is typically significantly lower than the quality of axial strain estimation. In this paper, a novel lateral strain estimation technique based on the physics of compressible porous media is developed, tested and validated. This technique is referred to as \"Poroelastography-based Ultrasound Lateral Strain Estimation\" (PULSE). PULSE differs from previously proposed lateral strain estimators as it uses the underlying physics of internal fluid flow within a local region of the tissue as theoretical foundation. PULSE establishes a relation between spatiotemporal changes in the axial strains and corresponding spatiotemporal changes in the lateral strains, effectively allowing assessment of lateral strains with comparable quality of axial strain estimators. We demonstrate that PULSE can also be used to accurately track compression-induced solid stresses and fluid pressure in cancers using ultrasound poroelastography (USPE). In this study, we report the theoretical formulation for PULSE and validation using finite element (FE) and ultrasound simulations. PULSE-generated results exhibit less than 5% percentage relative error (PRE) and greater than 90% structural similarity index (SSIM) compared to ground truth simulations. Experimental results are included to qualitatively assess the performance of PULSE in vivo. The proposed method can be used to overcome the inherent limitations of non-axial strain imaging and improve clinical translatability of USPE.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Poroelastography Method for High-quality Estimation of Lateral Strain, Solid Stress and Fluid Pressure In Vivo.\",\"authors\":\"Md Hadiur Rahman Khan, Raffaella Righetti\",\"doi\":\"10.1109/TMI.2024.3438564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessment of mechanical and transport properties of tissues using ultrasound elasticity imaging requires accurate estimations of the spatiotemporal distribution of volumetric strain. Due to physical constraints such as pitch limitation and the lack of phase information in the lateral direction, the quality of lateral strain estimation is typically significantly lower than the quality of axial strain estimation. In this paper, a novel lateral strain estimation technique based on the physics of compressible porous media is developed, tested and validated. This technique is referred to as \\\"Poroelastography-based Ultrasound Lateral Strain Estimation\\\" (PULSE). PULSE differs from previously proposed lateral strain estimators as it uses the underlying physics of internal fluid flow within a local region of the tissue as theoretical foundation. PULSE establishes a relation between spatiotemporal changes in the axial strains and corresponding spatiotemporal changes in the lateral strains, effectively allowing assessment of lateral strains with comparable quality of axial strain estimators. We demonstrate that PULSE can also be used to accurately track compression-induced solid stresses and fluid pressure in cancers using ultrasound poroelastography (USPE). In this study, we report the theoretical formulation for PULSE and validation using finite element (FE) and ultrasound simulations. PULSE-generated results exhibit less than 5% percentage relative error (PRE) and greater than 90% structural similarity index (SSIM) compared to ground truth simulations. Experimental results are included to qualitatively assess the performance of PULSE in vivo. The proposed method can be used to overcome the inherent limitations of non-axial strain imaging and improve clinical translatability of USPE.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2024.3438564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3438564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用超声弹性成像评估组织的机械和传输特性需要准确估计体积应变的时空分布。由于间距限制和横向相位信息缺乏等物理限制,横向应变估计的质量通常明显低于轴向应变估计的质量。本文基于可压缩多孔介质的物理学原理,开发、测试和验证了一种新型横向应变估算技术。该技术被称为 "基于超声波侧向应变估算(PULSE)"。PULSE 与之前提出的侧向应变估算器不同,它使用组织局部区域内内部流体流动的基本物理学作为理论基础。PULSE 建立了轴向应变的时空变化与侧向应变的相应时空变化之间的关系,从而有效地评估了侧向应变,其质量与轴向应变估算器相当。我们证明了 PULSE 还可用于利用超声孔弹性成像 (USPE) 精确跟踪癌症中压缩引起的固体应力和流体压力。在本研究中,我们报告了 PULSE 的理论公式,并使用有限元 (FE) 和超声模拟进行了验证。与地面实况模拟相比,PULSE 生成的结果显示出小于 5% 的百分比相对误差 (PRE),以及大于 90% 的结构相似性指数 (SSIM)。实验结果对 PULSE 在体内的性能进行了定性评估。所提出的方法可用于克服非轴应变成像的固有局限性,并提高 USPE 的临床转化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Poroelastography Method for High-quality Estimation of Lateral Strain, Solid Stress and Fluid Pressure In Vivo.

Assessment of mechanical and transport properties of tissues using ultrasound elasticity imaging requires accurate estimations of the spatiotemporal distribution of volumetric strain. Due to physical constraints such as pitch limitation and the lack of phase information in the lateral direction, the quality of lateral strain estimation is typically significantly lower than the quality of axial strain estimation. In this paper, a novel lateral strain estimation technique based on the physics of compressible porous media is developed, tested and validated. This technique is referred to as "Poroelastography-based Ultrasound Lateral Strain Estimation" (PULSE). PULSE differs from previously proposed lateral strain estimators as it uses the underlying physics of internal fluid flow within a local region of the tissue as theoretical foundation. PULSE establishes a relation between spatiotemporal changes in the axial strains and corresponding spatiotemporal changes in the lateral strains, effectively allowing assessment of lateral strains with comparable quality of axial strain estimators. We demonstrate that PULSE can also be used to accurately track compression-induced solid stresses and fluid pressure in cancers using ultrasound poroelastography (USPE). In this study, we report the theoretical formulation for PULSE and validation using finite element (FE) and ultrasound simulations. PULSE-generated results exhibit less than 5% percentage relative error (PRE) and greater than 90% structural similarity index (SSIM) compared to ground truth simulations. Experimental results are included to qualitatively assess the performance of PULSE in vivo. The proposed method can be used to overcome the inherent limitations of non-axial strain imaging and improve clinical translatability of USPE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信