Sameet Sreenivasan, Chao Fang, Emuella M Flood, Natasha Markuzon, Jasmine Y Y Sze
{"title":"利用患者论坛讨论和自然语言处理深入了解早期乳腺癌治疗中激素疗法的患者体验。","authors":"Sameet Sreenivasan, Chao Fang, Emuella M Flood, Natasha Markuzon, Jasmine Y Y Sze","doi":"10.1200/CCI.24.00038","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Understanding the real-world experience of patients with early breast cancer (eBC) is imperative for optimizing outcomes and evolving patient care. However, there is a lack of patient-level data, hindering clinical development. This social listening study was performed to understand patient insights into symptoms and impacts of hormone therapy (HT) for eBC using posts from patient forums on breastcancer.org to inform future clinical research.</p><p><strong>Methods: </strong>Natural language processing (NLP) and machine learning techniques were used to identify themes related to eBC from a sample of 500,000 posts. After relevant data selection, 362,074 eBC posts were retained for further analysis of symptoms and impacts related to HT, as well as insights into symptom severity, pain locations, and symptom management using exercise and yoga.</p><p><strong>Results: </strong>Overall, 32 symptoms and nine impacts had significant associations with ≥one HT. Hot flush (relative risk [RR], 6.70 [95% CI, 3.36 to 13.36]), arthralgia (RR, 6.67 [95% CI, 3.53 to 12.59]), weight increased (RR, 4.83 [95% CI, 3.20 to 7.28]), mood swings (RR, 7.36 [95% CI, 5.75 to 9.42]), insomnia (RR, 4.76 [95% CI, 3.14 to 7.22]), and depression (RR, 3.05 [95% CI, 1.71 to 5.44]) demonstrated the strongest associations. Severe headache, dizziness, back pain, and muscle spasms showed significant associations with ≥one HT despite their low overall prevalence in eBC posts.</p><p><strong>Conclusion: </strong>The social listening approach allowed the identification of real-world insights from posts specific to eBC HT from a large-scale online breast cancer forum that captured experiences from a uniquely diverse group of patients. Using NLP has a potential to scale analysis of patient feedback and reveal actionable insights into patient experiences of treatment that can inform the development of future therapies and improve the care of patients with eBC.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights Into the Patient Experience of Hormone Therapy for Early Breast Cancer Treatment Using Patient Forum Discussions and Natural Language Processing.\",\"authors\":\"Sameet Sreenivasan, Chao Fang, Emuella M Flood, Natasha Markuzon, Jasmine Y Y Sze\",\"doi\":\"10.1200/CCI.24.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Understanding the real-world experience of patients with early breast cancer (eBC) is imperative for optimizing outcomes and evolving patient care. However, there is a lack of patient-level data, hindering clinical development. This social listening study was performed to understand patient insights into symptoms and impacts of hormone therapy (HT) for eBC using posts from patient forums on breastcancer.org to inform future clinical research.</p><p><strong>Methods: </strong>Natural language processing (NLP) and machine learning techniques were used to identify themes related to eBC from a sample of 500,000 posts. After relevant data selection, 362,074 eBC posts were retained for further analysis of symptoms and impacts related to HT, as well as insights into symptom severity, pain locations, and symptom management using exercise and yoga.</p><p><strong>Results: </strong>Overall, 32 symptoms and nine impacts had significant associations with ≥one HT. Hot flush (relative risk [RR], 6.70 [95% CI, 3.36 to 13.36]), arthralgia (RR, 6.67 [95% CI, 3.53 to 12.59]), weight increased (RR, 4.83 [95% CI, 3.20 to 7.28]), mood swings (RR, 7.36 [95% CI, 5.75 to 9.42]), insomnia (RR, 4.76 [95% CI, 3.14 to 7.22]), and depression (RR, 3.05 [95% CI, 1.71 to 5.44]) demonstrated the strongest associations. Severe headache, dizziness, back pain, and muscle spasms showed significant associations with ≥one HT despite their low overall prevalence in eBC posts.</p><p><strong>Conclusion: </strong>The social listening approach allowed the identification of real-world insights from posts specific to eBC HT from a large-scale online breast cancer forum that captured experiences from a uniquely diverse group of patients. Using NLP has a potential to scale analysis of patient feedback and reveal actionable insights into patient experiences of treatment that can inform the development of future therapies and improve the care of patients with eBC.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.24.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Insights Into the Patient Experience of Hormone Therapy for Early Breast Cancer Treatment Using Patient Forum Discussions and Natural Language Processing.
Purpose: Understanding the real-world experience of patients with early breast cancer (eBC) is imperative for optimizing outcomes and evolving patient care. However, there is a lack of patient-level data, hindering clinical development. This social listening study was performed to understand patient insights into symptoms and impacts of hormone therapy (HT) for eBC using posts from patient forums on breastcancer.org to inform future clinical research.
Methods: Natural language processing (NLP) and machine learning techniques were used to identify themes related to eBC from a sample of 500,000 posts. After relevant data selection, 362,074 eBC posts were retained for further analysis of symptoms and impacts related to HT, as well as insights into symptom severity, pain locations, and symptom management using exercise and yoga.
Results: Overall, 32 symptoms and nine impacts had significant associations with ≥one HT. Hot flush (relative risk [RR], 6.70 [95% CI, 3.36 to 13.36]), arthralgia (RR, 6.67 [95% CI, 3.53 to 12.59]), weight increased (RR, 4.83 [95% CI, 3.20 to 7.28]), mood swings (RR, 7.36 [95% CI, 5.75 to 9.42]), insomnia (RR, 4.76 [95% CI, 3.14 to 7.22]), and depression (RR, 3.05 [95% CI, 1.71 to 5.44]) demonstrated the strongest associations. Severe headache, dizziness, back pain, and muscle spasms showed significant associations with ≥one HT despite their low overall prevalence in eBC posts.
Conclusion: The social listening approach allowed the identification of real-world insights from posts specific to eBC HT from a large-scale online breast cancer forum that captured experiences from a uniquely diverse group of patients. Using NLP has a potential to scale analysis of patient feedback and reveal actionable insights into patient experiences of treatment that can inform the development of future therapies and improve the care of patients with eBC.