Wen Xi Cao, Daniel M Merritt, Karinna Pe, Michael Cesar, Oliver Hobert
{"title":"基于 mScarlet 的新型红色荧光标记在秀丽隐杆线虫中的比较分析。","authors":"Wen Xi Cao, Daniel M Merritt, Karinna Pe, Michael Cesar, Oliver Hobert","doi":"10.1093/genetics/iyae126","DOIUrl":null,"url":null,"abstract":"<p><p>One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode Caenorhabditis elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and onset of expression of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3, and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles of C. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles for pks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the pan-neuronal, nuclear marker unc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457934/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of new mScarlet-based red fluorescent tags in Caenorhabditis elegans.\",\"authors\":\"Wen Xi Cao, Daniel M Merritt, Karinna Pe, Michael Cesar, Oliver Hobert\",\"doi\":\"10.1093/genetics/iyae126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode Caenorhabditis elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and onset of expression of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3, and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles of C. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles for pks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the pan-neuronal, nuclear marker unc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457934/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae126\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae126","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Comparative analysis of new mScarlet-based red fluorescent tags in Caenorhabditis elegans.
One problem that has hampered the use of red fluorescent proteins in the fast-developing nematode Caenorhabditis elegans has been the substantial time delay in maturation of several generations of red fluorophores. The recently described mScarlet-I3 protein has properties that may overcome this limitation. We compare here the brightness and onset of expression of CRISPR/Cas9 genome-engineered mScarlet, mScarlet3, mScarlet-I3, and GFP reporter knock-ins. Comparing the onset and brightness of expression of reporter alleles of C. elegans golg-4, encoding a broadly expressed Golgi resident protein, we found that the onset of detection of mScarlet-I3 in the embryo is several hours earlier than older versions of mScarlet and comparable to GFP. These findings were further supported by comparing mScarlet-I3 and GFP reporter alleles for pks-1, a gene expressed in the CAN neuron and cells of the alimentary system, as well as reporter alleles for the pan-neuronal, nuclear marker unc-75. Hence, the relative properties of mScarlet-I3 and GFP do not depend on cellular or subcellular context. In all cases, mScarlet-I3 reporters also show improved signal-to-noise ratio compared to GFP.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.