Faraj Alotaiby, Saja A Alramadhan, Sarah G Fitzpatrick, Mohammed N Islam, Donald M Cohen, Indraneel Bhattacharyya
{"title":"通过荧光原位杂交评估幼年骨化性纤维瘤的 MDM2 基因座扩增情况","authors":"Faraj Alotaiby, Saja A Alramadhan, Sarah G Fitzpatrick, Mohammed N Islam, Donald M Cohen, Indraneel Bhattacharyya","doi":"10.1007/s12105-024-01682-x","DOIUrl":null,"url":null,"abstract":"<p><p>Juvenile ossifying fibroma (JOF) is an uncommon benign fibro-osseous lesion (BFOL) of the maxillofacial bones with a locally aggressive nature and a high recurrence rate. Murine Double Minute 2 (MDM2) is an oncogene located at chromosome 12 (12q13-15) that inhibits the tumor suppressor gene TP53. The presence of MDM2 gene locus amplification is a useful molecular adjunct in the evaluation of some sarcomas, including low-grade intramedullary osteosarcoma (LGIOS). JOF and LGIOS have some overlapping clinical and histopathological features. The aim of this study is to evaluate a series of JOF for the presence of MDM2 gene locus amplification using fluorescence in-situ hybridization (FISH).</p><p><strong>Materials and methods: </strong>With IRB approval, a search of the institutional files of the archives of the Oral Pathology and Surgical Pathology biopsy services at the University of Florida Health was performed. The cases were re-evaluated by an oral pathology resident, an oral and maxillofacial pathologist, and a bone and soft tissue pathologist. Cases with consensus in diagnosis were selected (n = 9) for MDM2 testing. Testing by FISH for MDM2 gene locus amplification was applied to all retrieved cases.</p><p><strong>Results: </strong>The examined cases were all negative for MDM2 gene locus amplification via FISH testing.</p><p><strong>Conclusion: </strong>In our small series, JOF did not demonstrate MDM2 gene locus abnormality, a characteristic of LGIOS. This finding suggests that JOF has a distinct underlying pathogenesis. If confirmed in a larger series, these findings may be useful in distinguishing these two entities in cases with overlapping features or when minimal biopsy material is available.</p>","PeriodicalId":47972,"journal":{"name":"Head & Neck Pathology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of MDM2 Gene Locus Amplification by Fluorescence In-Situ Hybridization in Juvenile Ossifying Fibroma.\",\"authors\":\"Faraj Alotaiby, Saja A Alramadhan, Sarah G Fitzpatrick, Mohammed N Islam, Donald M Cohen, Indraneel Bhattacharyya\",\"doi\":\"10.1007/s12105-024-01682-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Juvenile ossifying fibroma (JOF) is an uncommon benign fibro-osseous lesion (BFOL) of the maxillofacial bones with a locally aggressive nature and a high recurrence rate. Murine Double Minute 2 (MDM2) is an oncogene located at chromosome 12 (12q13-15) that inhibits the tumor suppressor gene TP53. The presence of MDM2 gene locus amplification is a useful molecular adjunct in the evaluation of some sarcomas, including low-grade intramedullary osteosarcoma (LGIOS). JOF and LGIOS have some overlapping clinical and histopathological features. The aim of this study is to evaluate a series of JOF for the presence of MDM2 gene locus amplification using fluorescence in-situ hybridization (FISH).</p><p><strong>Materials and methods: </strong>With IRB approval, a search of the institutional files of the archives of the Oral Pathology and Surgical Pathology biopsy services at the University of Florida Health was performed. The cases were re-evaluated by an oral pathology resident, an oral and maxillofacial pathologist, and a bone and soft tissue pathologist. Cases with consensus in diagnosis were selected (n = 9) for MDM2 testing. Testing by FISH for MDM2 gene locus amplification was applied to all retrieved cases.</p><p><strong>Results: </strong>The examined cases were all negative for MDM2 gene locus amplification via FISH testing.</p><p><strong>Conclusion: </strong>In our small series, JOF did not demonstrate MDM2 gene locus abnormality, a characteristic of LGIOS. This finding suggests that JOF has a distinct underlying pathogenesis. If confirmed in a larger series, these findings may be useful in distinguishing these two entities in cases with overlapping features or when minimal biopsy material is available.</p>\",\"PeriodicalId\":47972,\"journal\":{\"name\":\"Head & Neck Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Head & Neck Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12105-024-01682-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head & Neck Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12105-024-01682-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Assessment of MDM2 Gene Locus Amplification by Fluorescence In-Situ Hybridization in Juvenile Ossifying Fibroma.
Juvenile ossifying fibroma (JOF) is an uncommon benign fibro-osseous lesion (BFOL) of the maxillofacial bones with a locally aggressive nature and a high recurrence rate. Murine Double Minute 2 (MDM2) is an oncogene located at chromosome 12 (12q13-15) that inhibits the tumor suppressor gene TP53. The presence of MDM2 gene locus amplification is a useful molecular adjunct in the evaluation of some sarcomas, including low-grade intramedullary osteosarcoma (LGIOS). JOF and LGIOS have some overlapping clinical and histopathological features. The aim of this study is to evaluate a series of JOF for the presence of MDM2 gene locus amplification using fluorescence in-situ hybridization (FISH).
Materials and methods: With IRB approval, a search of the institutional files of the archives of the Oral Pathology and Surgical Pathology biopsy services at the University of Florida Health was performed. The cases were re-evaluated by an oral pathology resident, an oral and maxillofacial pathologist, and a bone and soft tissue pathologist. Cases with consensus in diagnosis were selected (n = 9) for MDM2 testing. Testing by FISH for MDM2 gene locus amplification was applied to all retrieved cases.
Results: The examined cases were all negative for MDM2 gene locus amplification via FISH testing.
Conclusion: In our small series, JOF did not demonstrate MDM2 gene locus abnormality, a characteristic of LGIOS. This finding suggests that JOF has a distinct underlying pathogenesis. If confirmed in a larger series, these findings may be useful in distinguishing these two entities in cases with overlapping features or when minimal biopsy material is available.
期刊介绍:
Head & Neck Pathology presents scholarly papers, reviews and symposia that cover the spectrum of human surgical pathology within the anatomic zones of the oral cavity, sinonasal tract, larynx, hypopharynx, salivary gland, ear and temporal bone, and neck.
The journal publishes rapid developments in new diagnostic criteria, intraoperative consultation, immunohistochemical studies, molecular techniques, genetic analyses, diagnostic aids, experimental pathology, cytology, radiographic imaging, and application of uniform terminology to allow practitioners to continue to maintain and expand their knowledge in the subspecialty of head and neck pathology. Coverage of practical application to daily clinical practice is supported with proceedings and symposia from international societies and academies devoted to this field.
Single-blind peer review
The journal follows a single-blind review procedure, where the reviewers are aware of the names and affiliations of the authors, but the reviewer reports provided to authors are anonymous. Single-blind peer review is the traditional model of peer review that many reviewers are comfortable with, and it facilitates a dispassionate critique of a manuscript.