跑步机运动与声光和嗅觉刺激相结合,可通过脑源性神经营养因子和Cygb相关信号通路改善APP/PS1小鼠的认知功能。

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2025-09-01 Epub Date: 2024-07-29 DOI:10.4103/NRR.NRR-D-23-01681
Biao Xiao, Chaoyang Chu, Zhicheng Lin, Tianyuan Fang, Yuyu Zhou, Chuxia Zhang, Jianghui Shan, Shiyu Chen, Liping Li
{"title":"跑步机运动与声光和嗅觉刺激相结合,可通过脑源性神经营养因子和Cygb相关信号通路改善APP/PS1小鼠的认知功能。","authors":"Biao Xiao, Chaoyang Chu, Zhicheng Lin, Tianyuan Fang, Yuyu Zhou, Chuxia Zhang, Jianghui Shan, Shiyu Chen, Liping Li","doi":"10.4103/NRR.NRR-D-23-01681","DOIUrl":null,"url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"2706-2726"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor- and Cygb-associated signaling pathways.\",\"authors\":\"Biao Xiao, Chaoyang Chu, Zhicheng Lin, Tianyuan Fang, Yuyu Zhou, Chuxia Zhang, Jianghui Shan, Shiyu Chen, Liping Li\",\"doi\":\"10.4103/NRR.NRR-D-23-01681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"2706-2726\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-23-01681\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-23-01681","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

成体神经发生的减少与阿尔茨海默病患者的行为异常有关。因此,增强成体神经发生是缓解疾病症状和进展的一种很有前景的治疗方法。然而,目前旨在诱导成体神经发生的非药物干预措施还很有限。虽然有氧运动、声光刺激和嗅觉刺激等单独的非药物干预措施在改善阿尔茨海默病患者的神经发生和认知功能方面显示出了有限的能力,但将这些干预措施结合起来的策略的治疗效果尚未得到充分探索。在这项研究中,我们观察到,2-8 个月大的淀粉样前体蛋白/淀粉样前体蛋白 1 小鼠海马中,成年神经发生的减少与年龄有关,同时淀粉样蛋白-β的积累也在增加。淀粉样蛋白沉积在小鼠4个月大时开始显现,而神经发生在6个月大时开始下降,并随着病情的发展而进一步恶化。然而,经过为期4周的多因素刺激方案,包括跑步机跑步(46分钟/天,10米/分钟,每周6天)、40赫兹声光刺激(1小时/天,6天/周)和嗅觉刺激(1小时/天,6天/周)、我们发现新生细胞(5'-溴-2'-脱氧尿苷阳性细胞)、未成熟神经元(双皮质素阳性细胞)、新生未成熟神经元(5'-溴-2'-脱氧尿苷阳性/双皮质素阳性细胞)和新生星形胶质细胞(5'-溴-2'-脱氧尿苷阳性/胶质纤维酸性蛋白阳性细胞)的数量明显增加。此外,海马中的淀粉样蛋白-β负荷也有所下降。这些研究结果表明,多因素刺激可以增强淀粉样前体蛋白/presenilin 1小鼠的成年海马神经发生,减轻淀粉样蛋白-β神经病理学。此外,通过莫里斯水迷宫、新物体识别、强迫游泳测试和悬尾测试结果,淀粉样前体蛋白/前体蛋白1小鼠的认知能力得到了改善,抑郁症状也得到了缓解。值得注意的是,多因素刺激在巩固未成熟神经元方面的疗效在治疗停止后至少持续两周。在分子水平上,多因素刺激可上调淀粉样前体蛋白/早老素1小鼠海马中神经元相关蛋白(NeuN、双皮质素、突触后密度蛋白-95和突触素)、抗凋亡相关蛋白(Bcl-2和PARP)以及自噬相关蛋白(LC3B)的表达,同时降低凋亡相关蛋白(BAX和caspase-9)的表达。这些观察结果可能归因于脑源性神经营养因子介导的信号通路和抗氧化通路。此外,血清代谢组学分析表明,多因素刺激调节了与细胞凋亡、氧化损伤和认知相关的不同表达代谢物。总之,这些研究结果表明,多因素刺激是预防和治疗阿尔茨海默病的一种新型非侵入性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor- and Cygb-associated signaling pathways.

JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信