BRCA1 次级剪接位点突变驱动外显子跳转和 PARP 抑制剂抗性。

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ksenija Nesic, John J Krais, Yifan Wang, Cassandra J Vandenberg, Pooja Patel, Kathy Q Cai, Tanya Kwan, Elizabeth Lieschke, Gwo-Yaw Ho, Holly E Barker, Justin Bedo, Silvia Casadei, Andrew Farrell, Marc Radke, Kristy Shield-Artin, Jocelyn S Penington, Franziska Geissler, Elizabeth Kyran, Robert Betsch, Lijun Xu, Fan Zhang, Alexander Dobrovic, Inger Olesen, Rebecca Kristeleit, Amit Oza, Iain McNeish, Gayanie Ratnayake, Nadia Traficante, Anna DeFazio, David D L Bowtell, Thomas C Harding, Kevin Lin, Elizabeth M Swisher, Olga Kondrashova, Clare L Scott, Neil Johnson, Matthew J Wakefield
{"title":"BRCA1 次级剪接位点突变驱动外显子跳转和 PARP 抑制剂抗性。","authors":"Ksenija Nesic, John J Krais, Yifan Wang, Cassandra J Vandenberg, Pooja Patel, Kathy Q Cai, Tanya Kwan, Elizabeth Lieschke, Gwo-Yaw Ho, Holly E Barker, Justin Bedo, Silvia Casadei, Andrew Farrell, Marc Radke, Kristy Shield-Artin, Jocelyn S Penington, Franziska Geissler, Elizabeth Kyran, Robert Betsch, Lijun Xu, Fan Zhang, Alexander Dobrovic, Inger Olesen, Rebecca Kristeleit, Amit Oza, Iain McNeish, Gayanie Ratnayake, Nadia Traficante, Anna DeFazio, David D L Bowtell, Thomas C Harding, Kevin Lin, Elizabeth M Swisher, Olga Kondrashova, Clare L Scott, Neil Johnson, Matthew J Wakefield","doi":"10.1186/s12943-024-02048-1","DOIUrl":null,"url":null,"abstract":"<p><p>PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame. BRCA1 splice isoforms △11 and △11q can contribute to PARPi resistance by splicing out the mutation-containing exon, producing truncated, partially functional proteins. However, the clinical impacts and underlying drivers of BRCA1 exon skipping are not fully understood.We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs) that drive exon skipping, confirmed using qRT-PCR, RNA sequencing, immunoblotting and minigene modelling. CRISPR/Cas9-mediated disruption of splicing functionally validated exon skipping as a mechanism of PARPi resistance. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials.Few PARPi resistance mechanisms have been confirmed in the clinical setting. While secondary/reversion mutations typically restore a gene's reading frame, we have identified secondary mutations in patient cohorts that hijack splice sites to enhance mutation-containing exon skipping, resulting in the overexpression of BRCA1 hypomorphs, which in turn promote PARPi resistance. Thus, BRCA1 SSMs can and should be clinically monitored, along with frame-restoring secondary mutations.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299415/pdf/","citationCount":"0","resultStr":"{\"title\":\"BRCA1 secondary splice-site mutations drive exon-skipping and PARP inhibitor resistance.\",\"authors\":\"Ksenija Nesic, John J Krais, Yifan Wang, Cassandra J Vandenberg, Pooja Patel, Kathy Q Cai, Tanya Kwan, Elizabeth Lieschke, Gwo-Yaw Ho, Holly E Barker, Justin Bedo, Silvia Casadei, Andrew Farrell, Marc Radke, Kristy Shield-Artin, Jocelyn S Penington, Franziska Geissler, Elizabeth Kyran, Robert Betsch, Lijun Xu, Fan Zhang, Alexander Dobrovic, Inger Olesen, Rebecca Kristeleit, Amit Oza, Iain McNeish, Gayanie Ratnayake, Nadia Traficante, Anna DeFazio, David D L Bowtell, Thomas C Harding, Kevin Lin, Elizabeth M Swisher, Olga Kondrashova, Clare L Scott, Neil Johnson, Matthew J Wakefield\",\"doi\":\"10.1186/s12943-024-02048-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame. BRCA1 splice isoforms △11 and △11q can contribute to PARPi resistance by splicing out the mutation-containing exon, producing truncated, partially functional proteins. However, the clinical impacts and underlying drivers of BRCA1 exon skipping are not fully understood.We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs) that drive exon skipping, confirmed using qRT-PCR, RNA sequencing, immunoblotting and minigene modelling. CRISPR/Cas9-mediated disruption of splicing functionally validated exon skipping as a mechanism of PARPi resistance. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials.Few PARPi resistance mechanisms have been confirmed in the clinical setting. While secondary/reversion mutations typically restore a gene's reading frame, we have identified secondary mutations in patient cohorts that hijack splice sites to enhance mutation-containing exon skipping, resulting in the overexpression of BRCA1 hypomorphs, which in turn promote PARPi resistance. Thus, BRCA1 SSMs can and should be clinically monitored, along with frame-restoring secondary mutations.</p>\",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-024-02048-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02048-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

PARP抑制剂(PARPi)疗法改变了同源重组DNA修复(HRR)缺陷卵巢癌患者(如BRCA1或BRCA2基因缺陷患者)的治疗结果。遗憾的是,PARPi 耐药性很常见。目前已描述了多种耐药机制,包括恢复 HR 基因阅读框的继发性突变。BRCA1 的剪接异构体△11 和△11q 可以剪接出含有突变的外显子,产生截短的、部分功能的蛋白质,从而导致 PARPi 耐药。我们分析了9个卵巢癌和乳腺癌患者衍生异种移植物(PDX)的BRCA1外显子11框移位突变的外显子跳过和治疗反应,包括化疗/PARPi前后患者衍生的一对匹配的PDX。在 PARPi 耐药的 PDX 肿瘤中,BRCA1 第 11 号外显子跳越率升高。利用 qRT-PCR、RNA 测序、免疫印迹和迷你基因建模证实,两个独立的 PDX 模型获得了驱动外显子跳越的继发性 BRCA1 剪接位点突变 (SSM)。CRISPR/Cas9 介导的剪接破坏功能验证了外显子跳过是 PARPi 抗性的一种机制。ARIEL2和ARIEL4临床试验的PARPi后卵巢癌患者队列中也富集了SSMs。虽然继发性/反转突变通常会恢复基因的阅读框,但我们在患者队列中发现了继发性突变,这些突变会劫持剪接位点以增强含突变外显子的跳过,从而导致 BRCA1 低形体的过度表达,进而促进 PARPi 抗性。因此,BRCA1 SSM 可以而且应该与框架恢复性继发性突变一起进行临床监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BRCA1 secondary splice-site mutations drive exon-skipping and PARP inhibitor resistance.

PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame. BRCA1 splice isoforms △11 and △11q can contribute to PARPi resistance by splicing out the mutation-containing exon, producing truncated, partially functional proteins. However, the clinical impacts and underlying drivers of BRCA1 exon skipping are not fully understood.We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs) that drive exon skipping, confirmed using qRT-PCR, RNA sequencing, immunoblotting and minigene modelling. CRISPR/Cas9-mediated disruption of splicing functionally validated exon skipping as a mechanism of PARPi resistance. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials.Few PARPi resistance mechanisms have been confirmed in the clinical setting. While secondary/reversion mutations typically restore a gene's reading frame, we have identified secondary mutations in patient cohorts that hijack splice sites to enhance mutation-containing exon skipping, resulting in the overexpression of BRCA1 hypomorphs, which in turn promote PARPi resistance. Thus, BRCA1 SSMs can and should be clinically monitored, along with frame-restoring secondary mutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信