{"title":"结合磁共振成像深度转移学习、放射组学特征和临床因素的直肠癌术前分期预测:准确区分 T2 期和 T3 期。","authors":"Lifang Fan, Huazhang Wu, Yimin Wu, Shujian Wu, Jinsong Zhao, Xiangming Zhu","doi":"10.1186/s12876-024-03316-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study evaluates the efficacy of integrating MRI deep transfer learning, radiomic signatures, and clinical variables to accurately preoperatively differentiate between stage T2 and T3 rectal cancer.</p><p><strong>Methods: </strong>We included 361 patients with pathologically confirmed stage T2 or T3 rectal cancer, divided into a training set (252 patients) and a test set (109 patients) at a 7:3 ratio. The study utilized features derived from deep transfer learning and radiomics, with Spearman rank correlation and the Least Absolute Shrinkage and Selection Operator (LASSO) regression techniques to reduce feature redundancy. Predictive models were developed using Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM), selecting the best-performing model for a comprehensive predictive framework incorporating clinical data.</p><p><strong>Results: </strong>After removing redundant features, 24 key features were identified. In the training set, the area under the curve (AUC)values for LR, RF, DT, and SVM were 0.867, 0.834, 0.900, and 0.944, respectively; in the test set, they were 0.847, 0.803, 0.842, and 0.910, respectively. The combined model, using SVM and clinical variables, achieved AUCs of 0.946 in the trainingset and 0.920 in the test set.</p><p><strong>Conclusion: </strong>The study confirms the utility of a combined model of MRI deep transfer learning, radiomic features, and clinical factors for preoperative classification of stage T2 vs. T3 rectal cancer, offering significant technological support for precise diagnosis and potential clinical application.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"24 1","pages":"247"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preoperative prediction of rectal Cancer staging combining MRI deep transfer learning, radiomics features, and clinical factors: accurate differentiation from stage T2 to T3.\",\"authors\":\"Lifang Fan, Huazhang Wu, Yimin Wu, Shujian Wu, Jinsong Zhao, Xiangming Zhu\",\"doi\":\"10.1186/s12876-024-03316-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study evaluates the efficacy of integrating MRI deep transfer learning, radiomic signatures, and clinical variables to accurately preoperatively differentiate between stage T2 and T3 rectal cancer.</p><p><strong>Methods: </strong>We included 361 patients with pathologically confirmed stage T2 or T3 rectal cancer, divided into a training set (252 patients) and a test set (109 patients) at a 7:3 ratio. The study utilized features derived from deep transfer learning and radiomics, with Spearman rank correlation and the Least Absolute Shrinkage and Selection Operator (LASSO) regression techniques to reduce feature redundancy. Predictive models were developed using Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM), selecting the best-performing model for a comprehensive predictive framework incorporating clinical data.</p><p><strong>Results: </strong>After removing redundant features, 24 key features were identified. In the training set, the area under the curve (AUC)values for LR, RF, DT, and SVM were 0.867, 0.834, 0.900, and 0.944, respectively; in the test set, they were 0.847, 0.803, 0.842, and 0.910, respectively. The combined model, using SVM and clinical variables, achieved AUCs of 0.946 in the trainingset and 0.920 in the test set.</p><p><strong>Conclusion: </strong>The study confirms the utility of a combined model of MRI deep transfer learning, radiomic features, and clinical factors for preoperative classification of stage T2 vs. T3 rectal cancer, offering significant technological support for precise diagnosis and potential clinical application.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"24 1\",\"pages\":\"247\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12876-024-03316-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12876-024-03316-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Preoperative prediction of rectal Cancer staging combining MRI deep transfer learning, radiomics features, and clinical factors: accurate differentiation from stage T2 to T3.
Background: This study evaluates the efficacy of integrating MRI deep transfer learning, radiomic signatures, and clinical variables to accurately preoperatively differentiate between stage T2 and T3 rectal cancer.
Methods: We included 361 patients with pathologically confirmed stage T2 or T3 rectal cancer, divided into a training set (252 patients) and a test set (109 patients) at a 7:3 ratio. The study utilized features derived from deep transfer learning and radiomics, with Spearman rank correlation and the Least Absolute Shrinkage and Selection Operator (LASSO) regression techniques to reduce feature redundancy. Predictive models were developed using Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM), selecting the best-performing model for a comprehensive predictive framework incorporating clinical data.
Results: After removing redundant features, 24 key features were identified. In the training set, the area under the curve (AUC)values for LR, RF, DT, and SVM were 0.867, 0.834, 0.900, and 0.944, respectively; in the test set, they were 0.847, 0.803, 0.842, and 0.910, respectively. The combined model, using SVM and clinical variables, achieved AUCs of 0.946 in the trainingset and 0.920 in the test set.
Conclusion: The study confirms the utility of a combined model of MRI deep transfer learning, radiomic features, and clinical factors for preoperative classification of stage T2 vs. T3 rectal cancer, offering significant technological support for precise diagnosis and potential clinical application.