狄拉克超图随机稀疏化中的完美匹配

IF 1 2区 数学 Q1 MATHEMATICS
Dong Yeap Kang, Tom Kelly, Daniela Kühn, Deryk Osthus, Vincent Pfenninger
{"title":"狄拉克超图随机稀疏化中的完美匹配","authors":"Dong Yeap Kang, Tom Kelly, Daniela Kühn, Deryk Osthus, Vincent Pfenninger","doi":"10.1007/s00493-024-00116-0","DOIUrl":null,"url":null,"abstract":"<p>For all integers <span>\\(n \\ge k &gt; d \\ge 1\\)</span>, let <span>\\(m_{d}(k,n)\\)</span> be the minimum integer <span>\\(D \\ge 0\\)</span> such that every <i>k</i>-uniform <i>n</i>-vertex hypergraph <span>\\({\\mathcal {H}}\\)</span> with minimum <i>d</i>-degree <span>\\(\\delta _{d}({\\mathcal {H}})\\)</span> at least <i>D</i> has an optimal matching. For every fixed integer <span>\\(k \\ge 3\\)</span>, we show that for <span>\\(n \\in k \\mathbb {N}\\)</span> and <span>\\(p = \\Omega (n^{-k+1} \\log n)\\)</span>, if <span>\\({\\mathcal {H}}\\)</span> is an <i>n</i>-vertex <i>k</i>-uniform hypergraph with <span>\\(\\delta _{k-1}({\\mathcal {H}}) \\ge m_{k-1}(k,n)\\)</span>, then a.a.s. its <i>p</i>-random subhypergraph <span>\\({\\mathcal {H}}_p\\)</span> contains a perfect matching. Moreover, for every fixed integer <span>\\(d &lt; k\\)</span> and <span>\\(\\gamma &gt; 0\\)</span>, we show that the same conclusion holds if <span>\\({\\mathcal {H}}\\)</span> is an <i>n</i>-vertex <i>k</i>-uniform hypergraph with <span>\\(\\delta _d({\\mathcal {H}}) \\ge m_{d}(k,n) + \\gamma \\left( {\\begin{array}{c}n - d\\\\ k - d\\end{array}}\\right) \\)</span>. Both of these results strengthen Johansson, Kahn, and Vu’s seminal solution to Shamir’s problem and can be viewed as “robust” versions of hypergraph Dirac-type results. In addition, we also show that in both cases above, <span>\\({\\mathcal {H}}\\)</span> has at least <span>\\(\\exp ((1-1/k)n \\log n - \\Theta (n))\\)</span> many perfect matchings, which is best possible up to an <span>\\(\\exp (\\Theta (n))\\)</span> factor.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfect Matchings in Random Sparsifications of Dirac Hypergraphs\",\"authors\":\"Dong Yeap Kang, Tom Kelly, Daniela Kühn, Deryk Osthus, Vincent Pfenninger\",\"doi\":\"10.1007/s00493-024-00116-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For all integers <span>\\\\(n \\\\ge k &gt; d \\\\ge 1\\\\)</span>, let <span>\\\\(m_{d}(k,n)\\\\)</span> be the minimum integer <span>\\\\(D \\\\ge 0\\\\)</span> such that every <i>k</i>-uniform <i>n</i>-vertex hypergraph <span>\\\\({\\\\mathcal {H}}\\\\)</span> with minimum <i>d</i>-degree <span>\\\\(\\\\delta _{d}({\\\\mathcal {H}})\\\\)</span> at least <i>D</i> has an optimal matching. For every fixed integer <span>\\\\(k \\\\ge 3\\\\)</span>, we show that for <span>\\\\(n \\\\in k \\\\mathbb {N}\\\\)</span> and <span>\\\\(p = \\\\Omega (n^{-k+1} \\\\log n)\\\\)</span>, if <span>\\\\({\\\\mathcal {H}}\\\\)</span> is an <i>n</i>-vertex <i>k</i>-uniform hypergraph with <span>\\\\(\\\\delta _{k-1}({\\\\mathcal {H}}) \\\\ge m_{k-1}(k,n)\\\\)</span>, then a.a.s. its <i>p</i>-random subhypergraph <span>\\\\({\\\\mathcal {H}}_p\\\\)</span> contains a perfect matching. Moreover, for every fixed integer <span>\\\\(d &lt; k\\\\)</span> and <span>\\\\(\\\\gamma &gt; 0\\\\)</span>, we show that the same conclusion holds if <span>\\\\({\\\\mathcal {H}}\\\\)</span> is an <i>n</i>-vertex <i>k</i>-uniform hypergraph with <span>\\\\(\\\\delta _d({\\\\mathcal {H}}) \\\\ge m_{d}(k,n) + \\\\gamma \\\\left( {\\\\begin{array}{c}n - d\\\\\\\\ k - d\\\\end{array}}\\\\right) \\\\)</span>. Both of these results strengthen Johansson, Kahn, and Vu’s seminal solution to Shamir’s problem and can be viewed as “robust” versions of hypergraph Dirac-type results. In addition, we also show that in both cases above, <span>\\\\({\\\\mathcal {H}}\\\\)</span> has at least <span>\\\\(\\\\exp ((1-1/k)n \\\\log n - \\\\Theta (n))\\\\)</span> many perfect matchings, which is best possible up to an <span>\\\\(\\\\exp (\\\\Theta (n))\\\\)</span> factor.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00116-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00116-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于所有整数(n \ge k > d \ge 1\),让(m_{d}(k,n)\)是最小整数(D \ge 0\),使得最小d度(\delta _{d}({\mathcal{H}}))至少为D的每一个k-uniform n-vertex超图({\mathcal {H}})都有一个最优匹配。对于每一个固定整数(kge 3),我们证明对于(n \in k \mathbb {N})和(p = \Omega (n^{-k+1} \log n))、if \({\mathcal {H}}\) is an n-vertex k-uniform hypergraph with \(\delta _{k-1}({\mathcal {H}}) \ge m_{k-1}(k,n)\), then a.s. 它的 p 随机子跨图 \({\mathcal {H}}_p\) 包含一个完美匹配。此外,对于每一个固定整数 \(d < k\) 和 \(\gamma >;0),我们证明如果 \({\mathcal {H}}\) 是一个 n 个顶点的 k-uniform 超图,并且 \(\delta _d({/mathcal {H}}) \ge m_{d}(k,n) + \gamma \left( {\begin{array}{c}n - d\ k - d\end{array}}\right) \),那么同样的结论也成立。这两个结果都加强了约翰森、卡恩和武对沙米尔问题的开创性解决,可以看作是超图狄拉克型结果的 "健壮 "版本。此外,我们还证明了在上述两种情况下,({mathcal {H}}\)至少有\(\exp ((1-1/k)n \log n - \Theta (n))\)个完美匹配,这是最好的可能,直到一个\(\exp (\Theta (n))\)因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfect Matchings in Random Sparsifications of Dirac Hypergraphs

For all integers \(n \ge k > d \ge 1\), let \(m_{d}(k,n)\) be the minimum integer \(D \ge 0\) such that every k-uniform n-vertex hypergraph \({\mathcal {H}}\) with minimum d-degree \(\delta _{d}({\mathcal {H}})\) at least D has an optimal matching. For every fixed integer \(k \ge 3\), we show that for \(n \in k \mathbb {N}\) and \(p = \Omega (n^{-k+1} \log n)\), if \({\mathcal {H}}\) is an n-vertex k-uniform hypergraph with \(\delta _{k-1}({\mathcal {H}}) \ge m_{k-1}(k,n)\), then a.a.s. its p-random subhypergraph \({\mathcal {H}}_p\) contains a perfect matching. Moreover, for every fixed integer \(d < k\) and \(\gamma > 0\), we show that the same conclusion holds if \({\mathcal {H}}\) is an n-vertex k-uniform hypergraph with \(\delta _d({\mathcal {H}}) \ge m_{d}(k,n) + \gamma \left( {\begin{array}{c}n - d\\ k - d\end{array}}\right) \). Both of these results strengthen Johansson, Kahn, and Vu’s seminal solution to Shamir’s problem and can be viewed as “robust” versions of hypergraph Dirac-type results. In addition, we also show that in both cases above, \({\mathcal {H}}\) has at least \(\exp ((1-1/k)n \log n - \Theta (n))\) many perfect matchings, which is best possible up to an \(\exp (\Theta (n))\) factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信