{"title":"探索作为乳腺癌重要预后标志物的 SALL4 及其与癌症发生过程中的进展途径的关联。","authors":"","doi":"10.1016/j.compbiolchem.2024.108164","DOIUrl":null,"url":null,"abstract":"<div><p>Breast carcinoma is the leading factor in women's cancer-related fatalities. Due to its numerous inherent molecular subtypes, breast cancer is an extremely diverse illness. The human epidermal growth factor receptor 2 (HER2) positive subtypes stands out among these subtypes as being especially prone to cancer development and illness recurrence. The regulation of embryonic stem cells' pluripotency and self-renewal is carried out by the SALL4 (Spalt-like transcription factor 4) family member. Numerous molecular pathways operating at the transcriptional, post-transcriptional, and epigenomic levels regulate the expression of SALL4. Many transcription factors control the expression of SALL4, with STAT3 being the primary regulator in hepatocellular carcinoma (HCC) and breast carcinoma. Moreover, this oncogene has been connected to a number of cellular functions, including invasion, apoptosis, proliferation, and resistance to therapy. Reduced patient survival rates and a worse prognosis have been linked to higher levels of SALL4. In order to target the undruggable SALL4 that is overexpressed in breast carcinoma, we investigated the prognostic levels of SALL4 in breast carcinoma and its interaction with various related proteins. Using TIMER 2.0 analysis, the expression pattern of SALL4 was investigated across all TCGA datasets. The research revealed that SALL4 expression was elevated in various cancers. The UALCAN findings demonstrated that SALL4 was overexpressed in all tumor samples including breast cancer especially TNBC (Triple negative breast cancer). The web-based ENRICHR program was used for gene ontology analysis that revealed SALL4 was actively involved in the development of the nervous system, positive regulation of stem cell proliferation, regulation of stem cell proliferation, regulation of the activin receptor signaling pathway, regulation of transcription using DNA templates, miRNA metabolic processes, and regulation of transcription by RNA Polymerase I. Using the STRING database, we analyzed the interaction and involvement of SALL4 with other abruptly activated proteins and used Cytoscape 3.8.0 for visualization. Additionally, using bc-GenExMiner, we studied the impact of SALL4 on pathways abruptly activated in different breast cancer subtypes that revealed SALL4 was highly correlated with WNT2B, NOTCH4, AKT3, and PIK3CA. Furthermore, to target SALL4, we evaluated and analyzed the impact of CLP and its analogues, revealing promising outcomes.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring SALL4 as a significant prognostic marker in breast cancer and its association with progression pathways involved in cancer genesis\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiolchem.2024.108164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Breast carcinoma is the leading factor in women's cancer-related fatalities. Due to its numerous inherent molecular subtypes, breast cancer is an extremely diverse illness. The human epidermal growth factor receptor 2 (HER2) positive subtypes stands out among these subtypes as being especially prone to cancer development and illness recurrence. The regulation of embryonic stem cells' pluripotency and self-renewal is carried out by the SALL4 (Spalt-like transcription factor 4) family member. Numerous molecular pathways operating at the transcriptional, post-transcriptional, and epigenomic levels regulate the expression of SALL4. Many transcription factors control the expression of SALL4, with STAT3 being the primary regulator in hepatocellular carcinoma (HCC) and breast carcinoma. Moreover, this oncogene has been connected to a number of cellular functions, including invasion, apoptosis, proliferation, and resistance to therapy. Reduced patient survival rates and a worse prognosis have been linked to higher levels of SALL4. In order to target the undruggable SALL4 that is overexpressed in breast carcinoma, we investigated the prognostic levels of SALL4 in breast carcinoma and its interaction with various related proteins. Using TIMER 2.0 analysis, the expression pattern of SALL4 was investigated across all TCGA datasets. The research revealed that SALL4 expression was elevated in various cancers. The UALCAN findings demonstrated that SALL4 was overexpressed in all tumor samples including breast cancer especially TNBC (Triple negative breast cancer). The web-based ENRICHR program was used for gene ontology analysis that revealed SALL4 was actively involved in the development of the nervous system, positive regulation of stem cell proliferation, regulation of stem cell proliferation, regulation of the activin receptor signaling pathway, regulation of transcription using DNA templates, miRNA metabolic processes, and regulation of transcription by RNA Polymerase I. Using the STRING database, we analyzed the interaction and involvement of SALL4 with other abruptly activated proteins and used Cytoscape 3.8.0 for visualization. Additionally, using bc-GenExMiner, we studied the impact of SALL4 on pathways abruptly activated in different breast cancer subtypes that revealed SALL4 was highly correlated with WNT2B, NOTCH4, AKT3, and PIK3CA. Furthermore, to target SALL4, we evaluated and analyzed the impact of CLP and its analogues, revealing promising outcomes.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S147692712400152X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147692712400152X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Exploring SALL4 as a significant prognostic marker in breast cancer and its association with progression pathways involved in cancer genesis
Breast carcinoma is the leading factor in women's cancer-related fatalities. Due to its numerous inherent molecular subtypes, breast cancer is an extremely diverse illness. The human epidermal growth factor receptor 2 (HER2) positive subtypes stands out among these subtypes as being especially prone to cancer development and illness recurrence. The regulation of embryonic stem cells' pluripotency and self-renewal is carried out by the SALL4 (Spalt-like transcription factor 4) family member. Numerous molecular pathways operating at the transcriptional, post-transcriptional, and epigenomic levels regulate the expression of SALL4. Many transcription factors control the expression of SALL4, with STAT3 being the primary regulator in hepatocellular carcinoma (HCC) and breast carcinoma. Moreover, this oncogene has been connected to a number of cellular functions, including invasion, apoptosis, proliferation, and resistance to therapy. Reduced patient survival rates and a worse prognosis have been linked to higher levels of SALL4. In order to target the undruggable SALL4 that is overexpressed in breast carcinoma, we investigated the prognostic levels of SALL4 in breast carcinoma and its interaction with various related proteins. Using TIMER 2.0 analysis, the expression pattern of SALL4 was investigated across all TCGA datasets. The research revealed that SALL4 expression was elevated in various cancers. The UALCAN findings demonstrated that SALL4 was overexpressed in all tumor samples including breast cancer especially TNBC (Triple negative breast cancer). The web-based ENRICHR program was used for gene ontology analysis that revealed SALL4 was actively involved in the development of the nervous system, positive regulation of stem cell proliferation, regulation of stem cell proliferation, regulation of the activin receptor signaling pathway, regulation of transcription using DNA templates, miRNA metabolic processes, and regulation of transcription by RNA Polymerase I. Using the STRING database, we analyzed the interaction and involvement of SALL4 with other abruptly activated proteins and used Cytoscape 3.8.0 for visualization. Additionally, using bc-GenExMiner, we studied the impact of SALL4 on pathways abruptly activated in different breast cancer subtypes that revealed SALL4 was highly correlated with WNT2B, NOTCH4, AKT3, and PIK3CA. Furthermore, to target SALL4, we evaluated and analyzed the impact of CLP and its analogues, revealing promising outcomes.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.