Sandy Oduor, Nathaniel N Gichuki, Janine L Brown, Jenna Parker, Dennis Kimata, Suzan Murray, Shifra Z Goldenberg, Maurice Schutgens, George Wittemyer
{"title":"肾上腺激素和新陈代谢激素显示了非洲象在人类占主导地位的景观中觅食时的风险-回报权衡。","authors":"Sandy Oduor, Nathaniel N Gichuki, Janine L Brown, Jenna Parker, Dennis Kimata, Suzan Murray, Shifra Z Goldenberg, Maurice Schutgens, George Wittemyer","doi":"10.1093/conphys/coae051","DOIUrl":null,"url":null,"abstract":"<p><p>A key driver of the African savannah elephant population decline is the loss of habitat and associated human-elephant conflict. Elephant physiological responses to these pressures, however, are largely unknown. To address this knowledge gap, we evaluated faecal glucocorticoid metabolite (fGCM) concentrations as an indicator of adrenal activity and faecal thyroid metabolite (fT3) concentrations as an indicator of metabolic activity in relation to land use, livestock density, and human landscape modification, while controlling for the effects of seasonality and primary productivity (measured using the normalized difference vegetation index). Our best-fit model found that fGCM concentrations to be elevated during the dry season, in areas with higher human modification index values, and those with more agropastoral activities and livestock. There was also a negative relationship between primary productivity and fGCM concentrations. We found fT3 concentrations to be higher during the wet season, in agropastoral landscapes, in locations with higher human activity, and in areas with no livestock. This study highlights how elephants balance nutritional rewards and risks in foraging decisions when using human-dominated landscapes, results that can serve to better interpret elephant behaviour at the human-wildlife interface and contribute to more insightful conservation strategies.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295215/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adrenal and metabolic hormones demonstrate risk-reward trade-offs for African elephants foraging in human-dominated landscapes.\",\"authors\":\"Sandy Oduor, Nathaniel N Gichuki, Janine L Brown, Jenna Parker, Dennis Kimata, Suzan Murray, Shifra Z Goldenberg, Maurice Schutgens, George Wittemyer\",\"doi\":\"10.1093/conphys/coae051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key driver of the African savannah elephant population decline is the loss of habitat and associated human-elephant conflict. Elephant physiological responses to these pressures, however, are largely unknown. To address this knowledge gap, we evaluated faecal glucocorticoid metabolite (fGCM) concentrations as an indicator of adrenal activity and faecal thyroid metabolite (fT3) concentrations as an indicator of metabolic activity in relation to land use, livestock density, and human landscape modification, while controlling for the effects of seasonality and primary productivity (measured using the normalized difference vegetation index). Our best-fit model found that fGCM concentrations to be elevated during the dry season, in areas with higher human modification index values, and those with more agropastoral activities and livestock. There was also a negative relationship between primary productivity and fGCM concentrations. We found fT3 concentrations to be higher during the wet season, in agropastoral landscapes, in locations with higher human activity, and in areas with no livestock. This study highlights how elephants balance nutritional rewards and risks in foraging decisions when using human-dominated landscapes, results that can serve to better interpret elephant behaviour at the human-wildlife interface and contribute to more insightful conservation strategies.</p>\",\"PeriodicalId\":54331,\"journal\":{\"name\":\"Conservation Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295215/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Physiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/conphys/coae051\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae051","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Adrenal and metabolic hormones demonstrate risk-reward trade-offs for African elephants foraging in human-dominated landscapes.
A key driver of the African savannah elephant population decline is the loss of habitat and associated human-elephant conflict. Elephant physiological responses to these pressures, however, are largely unknown. To address this knowledge gap, we evaluated faecal glucocorticoid metabolite (fGCM) concentrations as an indicator of adrenal activity and faecal thyroid metabolite (fT3) concentrations as an indicator of metabolic activity in relation to land use, livestock density, and human landscape modification, while controlling for the effects of seasonality and primary productivity (measured using the normalized difference vegetation index). Our best-fit model found that fGCM concentrations to be elevated during the dry season, in areas with higher human modification index values, and those with more agropastoral activities and livestock. There was also a negative relationship between primary productivity and fGCM concentrations. We found fT3 concentrations to be higher during the wet season, in agropastoral landscapes, in locations with higher human activity, and in areas with no livestock. This study highlights how elephants balance nutritional rewards and risks in foraging decisions when using human-dominated landscapes, results that can serve to better interpret elephant behaviour at the human-wildlife interface and contribute to more insightful conservation strategies.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.