{"title":"锰同时处理或预处理可保护培养的血管内皮细胞免受镉的细胞毒性。","authors":"Tomoya Fujie, Reika Ando, Momoka Abe, Natsumi Ichida, Keisuke Ito, Takato Hara, Chika Yamamoto, Toshiyuki Kaji","doi":"10.2131/jts.49.349","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium is a heavy metal that pollutes the environment and foods and is a risk factor for vascular disorders. We have previously demonstrated that pretreatment of vascular endothelial cells with zinc and copper protects the cells against cadmium cytotoxicity. In contrast, cadmium cytotoxicity was potentiated in cells following exposure to lead, thereby indicating that in vascular endothelial cells, cadmium cytotoxicity can be differentially modified by the co-occurrence of other heavy metals. In this study, we revealed that simultaneous treatment or pretreatment with manganese protects vascular endothelial cells against cadmium cytotoxicity. Intracellular accumulation of cadmium was observed to be reduced by simultaneous treatment with manganese, although not by pretreatment. The mRNA expression of metal transporters that regulate the uptake of both cadmium and manganese (ZIP8, ZIP14, and DMT1) remained unaffected by either simultaneous treatment or pretreatment with manganese, and simultaneous treatment with manganese suppressed the cadmium-induced expression of metallothionein but pretreatment with manganese did not exhibit such suppressive effect. Thus, the protection of vascular endothelial cells against cadmium cytotoxicity conferred by simultaneous treatment with manganese is assumed to be partially attributed to a reduction in the intracellular accumulation of cadmium, whereas the effects of pretreatment with manganese are independent of both the reduced intracellular accumulation of cadmium and the induction of metallothionein. These observations accordingly indicate that the protective effects of manganese are mediated via alternative (as yet unidentified) mechanisms.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"49 8","pages":"349-358"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protection of cultured vascular endothelial cells against cadmium cytotoxicity by simultaneous treatment or pretreatment with manganese.\",\"authors\":\"Tomoya Fujie, Reika Ando, Momoka Abe, Natsumi Ichida, Keisuke Ito, Takato Hara, Chika Yamamoto, Toshiyuki Kaji\",\"doi\":\"10.2131/jts.49.349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cadmium is a heavy metal that pollutes the environment and foods and is a risk factor for vascular disorders. We have previously demonstrated that pretreatment of vascular endothelial cells with zinc and copper protects the cells against cadmium cytotoxicity. In contrast, cadmium cytotoxicity was potentiated in cells following exposure to lead, thereby indicating that in vascular endothelial cells, cadmium cytotoxicity can be differentially modified by the co-occurrence of other heavy metals. In this study, we revealed that simultaneous treatment or pretreatment with manganese protects vascular endothelial cells against cadmium cytotoxicity. Intracellular accumulation of cadmium was observed to be reduced by simultaneous treatment with manganese, although not by pretreatment. The mRNA expression of metal transporters that regulate the uptake of both cadmium and manganese (ZIP8, ZIP14, and DMT1) remained unaffected by either simultaneous treatment or pretreatment with manganese, and simultaneous treatment with manganese suppressed the cadmium-induced expression of metallothionein but pretreatment with manganese did not exhibit such suppressive effect. Thus, the protection of vascular endothelial cells against cadmium cytotoxicity conferred by simultaneous treatment with manganese is assumed to be partially attributed to a reduction in the intracellular accumulation of cadmium, whereas the effects of pretreatment with manganese are independent of both the reduced intracellular accumulation of cadmium and the induction of metallothionein. These observations accordingly indicate that the protective effects of manganese are mediated via alternative (as yet unidentified) mechanisms.</p>\",\"PeriodicalId\":17654,\"journal\":{\"name\":\"Journal of Toxicological Sciences\",\"volume\":\"49 8\",\"pages\":\"349-358\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.49.349\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.49.349","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Protection of cultured vascular endothelial cells against cadmium cytotoxicity by simultaneous treatment or pretreatment with manganese.
Cadmium is a heavy metal that pollutes the environment and foods and is a risk factor for vascular disorders. We have previously demonstrated that pretreatment of vascular endothelial cells with zinc and copper protects the cells against cadmium cytotoxicity. In contrast, cadmium cytotoxicity was potentiated in cells following exposure to lead, thereby indicating that in vascular endothelial cells, cadmium cytotoxicity can be differentially modified by the co-occurrence of other heavy metals. In this study, we revealed that simultaneous treatment or pretreatment with manganese protects vascular endothelial cells against cadmium cytotoxicity. Intracellular accumulation of cadmium was observed to be reduced by simultaneous treatment with manganese, although not by pretreatment. The mRNA expression of metal transporters that regulate the uptake of both cadmium and manganese (ZIP8, ZIP14, and DMT1) remained unaffected by either simultaneous treatment or pretreatment with manganese, and simultaneous treatment with manganese suppressed the cadmium-induced expression of metallothionein but pretreatment with manganese did not exhibit such suppressive effect. Thus, the protection of vascular endothelial cells against cadmium cytotoxicity conferred by simultaneous treatment with manganese is assumed to be partially attributed to a reduction in the intracellular accumulation of cadmium, whereas the effects of pretreatment with manganese are independent of both the reduced intracellular accumulation of cadmium and the induction of metallothionein. These observations accordingly indicate that the protective effects of manganese are mediated via alternative (as yet unidentified) mechanisms.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.