Weifeng Ma , Ali Basem , Soheil Salahshour , Zainab Younus Abdullah , Mohammed Al-Bahrani , Raman Kumar , Sh. Esmaeili
{"title":"通过分子动力学模拟研究多孔碳基基质的力学行为:硅掺杂的影响","authors":"Weifeng Ma , Ali Basem , Soheil Salahshour , Zainab Younus Abdullah , Mohammed Al-Bahrani , Raman Kumar , Sh. Esmaeili","doi":"10.1016/j.jmgm.2024.108836","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the mechanical properties of porous carbon-based materials can lead to advancements in various applications, including energy storage, filtration, and lightweight structural components. Also, investigating how silicon doping affects these materials can help optimize their mechanical properties, potentially improving strength, durability, and other performance metrics. This research investigated the effects of atomic doping (Si particle up to 10 %) on the mechanical properties of the porous carbon matrix using molecular dynamics methods. Young's modulus, ultimate strength, radial distribution function, interaction energy, mean square displacement and potential energy of designed samples were reported. MD outputs predict the Si doping process improved the mechanical performance of porous structures. Numerically, Young's modulus of the C-based porous matrix increased from 234.33 GPa to 363.82 GPa by 5 % Si inserted into a pristine porous sample. Also, the ultimate strength increases from 48.54 to 115.93 GPa with increasing Si doping from 1 % to 5 %. Silicon doping enhances the bonding strength and reduces defects in the carbon matrix, leading to improved stiffness and load-bearing capacity. This results in significant increases in mechanical performance. However, excess Si may disrupt the optimal bonding network, leading to weaker connections within the matrix. Also, considering the negative value of potential energy in different doping percentages, it can be concluded that the amount of doping added up to 10 % does not disturb the initial structure and stability of the system, and the structure still has structural stability. So, we expected our introduced atomic samples to be used in actual applications.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"132 ","pages":"Article 108836"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of mechanical behavior of porous carbon-based matrix by molecular dynamics simulation: Effects of Si doping\",\"authors\":\"Weifeng Ma , Ali Basem , Soheil Salahshour , Zainab Younus Abdullah , Mohammed Al-Bahrani , Raman Kumar , Sh. Esmaeili\",\"doi\":\"10.1016/j.jmgm.2024.108836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the mechanical properties of porous carbon-based materials can lead to advancements in various applications, including energy storage, filtration, and lightweight structural components. Also, investigating how silicon doping affects these materials can help optimize their mechanical properties, potentially improving strength, durability, and other performance metrics. This research investigated the effects of atomic doping (Si particle up to 10 %) on the mechanical properties of the porous carbon matrix using molecular dynamics methods. Young's modulus, ultimate strength, radial distribution function, interaction energy, mean square displacement and potential energy of designed samples were reported. MD outputs predict the Si doping process improved the mechanical performance of porous structures. Numerically, Young's modulus of the C-based porous matrix increased from 234.33 GPa to 363.82 GPa by 5 % Si inserted into a pristine porous sample. Also, the ultimate strength increases from 48.54 to 115.93 GPa with increasing Si doping from 1 % to 5 %. Silicon doping enhances the bonding strength and reduces defects in the carbon matrix, leading to improved stiffness and load-bearing capacity. This results in significant increases in mechanical performance. However, excess Si may disrupt the optimal bonding network, leading to weaker connections within the matrix. Also, considering the negative value of potential energy in different doping percentages, it can be concluded that the amount of doping added up to 10 % does not disturb the initial structure and stability of the system, and the structure still has structural stability. So, we expected our introduced atomic samples to be used in actual applications.</p></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"132 \",\"pages\":\"Article 108836\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001360\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001360","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigation of mechanical behavior of porous carbon-based matrix by molecular dynamics simulation: Effects of Si doping
Understanding the mechanical properties of porous carbon-based materials can lead to advancements in various applications, including energy storage, filtration, and lightweight structural components. Also, investigating how silicon doping affects these materials can help optimize their mechanical properties, potentially improving strength, durability, and other performance metrics. This research investigated the effects of atomic doping (Si particle up to 10 %) on the mechanical properties of the porous carbon matrix using molecular dynamics methods. Young's modulus, ultimate strength, radial distribution function, interaction energy, mean square displacement and potential energy of designed samples were reported. MD outputs predict the Si doping process improved the mechanical performance of porous structures. Numerically, Young's modulus of the C-based porous matrix increased from 234.33 GPa to 363.82 GPa by 5 % Si inserted into a pristine porous sample. Also, the ultimate strength increases from 48.54 to 115.93 GPa with increasing Si doping from 1 % to 5 %. Silicon doping enhances the bonding strength and reduces defects in the carbon matrix, leading to improved stiffness and load-bearing capacity. This results in significant increases in mechanical performance. However, excess Si may disrupt the optimal bonding network, leading to weaker connections within the matrix. Also, considering the negative value of potential energy in different doping percentages, it can be concluded that the amount of doping added up to 10 % does not disturb the initial structure and stability of the system, and the structure still has structural stability. So, we expected our introduced atomic samples to be used in actual applications.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.