Kari Lavikka, Jaana Oikkonen, Yilin Li, Taru Muranen, Giulia Micoli, Giovanni Marchi, Alexandra Lahtinen, Kaisa Huhtinen, Rainer Lehtonen, Sakari Hietanen, Johanna Hynninen, Anni Virtanen, Sampsa Hautaniemi
{"title":"用 GenomeSpy 解密癌症基因组:基于语法的可视化工具包。","authors":"Kari Lavikka, Jaana Oikkonen, Yilin Li, Taru Muranen, Giulia Micoli, Giovanni Marchi, Alexandra Lahtinen, Kaisa Huhtinen, Rainer Lehtonen, Sakari Hietanen, Johanna Hynninen, Anni Virtanen, Sampsa Hautaniemi","doi":"10.1093/gigascience/giae040","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Visualization is an indispensable facet of genomic data analysis. Despite the abundance of specialized visualization tools, there remains a distinct need for tailored solutions. However, their implementation typically requires extensive programming expertise from bioinformaticians and software developers, especially when building interactive applications. Toolkits based on visualization grammars offer a more accessible, declarative way to author new visualizations. Yet, current grammar-based solutions fall short in adequately supporting the interactive analysis of large datasets with extensive sample collections, a pivotal task often encountered in cancer research.</p><p><strong>Findings: </strong>We present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations for genomic data analysis. By using combinatorial building blocks and a declarative language, users can implement new visualization designs easily and embed them in web pages or end-user-oriented applications. A distinctive element of GenomeSpy's architecture is its effective use of the graphics processing unit in all rendering, enabling a high frame rate and smoothly animated interactions, such as navigation within a genome. We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability.</p><p><strong>Conclusions: </strong>GenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is open source with an MIT license, implemented in JavaScript, and available at https://genomespy.app/.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering cancer genomes with GenomeSpy: a grammar-based visualization toolkit.\",\"authors\":\"Kari Lavikka, Jaana Oikkonen, Yilin Li, Taru Muranen, Giulia Micoli, Giovanni Marchi, Alexandra Lahtinen, Kaisa Huhtinen, Rainer Lehtonen, Sakari Hietanen, Johanna Hynninen, Anni Virtanen, Sampsa Hautaniemi\",\"doi\":\"10.1093/gigascience/giae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Visualization is an indispensable facet of genomic data analysis. Despite the abundance of specialized visualization tools, there remains a distinct need for tailored solutions. However, their implementation typically requires extensive programming expertise from bioinformaticians and software developers, especially when building interactive applications. Toolkits based on visualization grammars offer a more accessible, declarative way to author new visualizations. Yet, current grammar-based solutions fall short in adequately supporting the interactive analysis of large datasets with extensive sample collections, a pivotal task often encountered in cancer research.</p><p><strong>Findings: </strong>We present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations for genomic data analysis. By using combinatorial building blocks and a declarative language, users can implement new visualization designs easily and embed them in web pages or end-user-oriented applications. A distinctive element of GenomeSpy's architecture is its effective use of the graphics processing unit in all rendering, enabling a high frame rate and smoothly animated interactions, such as navigation within a genome. We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability.</p><p><strong>Conclusions: </strong>GenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is open source with an MIT license, implemented in JavaScript, and available at https://genomespy.app/.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae040\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Deciphering cancer genomes with GenomeSpy: a grammar-based visualization toolkit.
Background: Visualization is an indispensable facet of genomic data analysis. Despite the abundance of specialized visualization tools, there remains a distinct need for tailored solutions. However, their implementation typically requires extensive programming expertise from bioinformaticians and software developers, especially when building interactive applications. Toolkits based on visualization grammars offer a more accessible, declarative way to author new visualizations. Yet, current grammar-based solutions fall short in adequately supporting the interactive analysis of large datasets with extensive sample collections, a pivotal task often encountered in cancer research.
Findings: We present GenomeSpy, a grammar-based toolkit for authoring tailored, interactive visualizations for genomic data analysis. By using combinatorial building blocks and a declarative language, users can implement new visualization designs easily and embed them in web pages or end-user-oriented applications. A distinctive element of GenomeSpy's architecture is its effective use of the graphics processing unit in all rendering, enabling a high frame rate and smoothly animated interactions, such as navigation within a genome. We demonstrate the utility of GenomeSpy by characterizing the genomic landscape of 753 ovarian cancer samples from patients in the DECIDER clinical trial. Our results expand the understanding of the genomic architecture in ovarian cancer, particularly the diversity of chromosomal instability.
Conclusions: GenomeSpy is a visualization toolkit applicable to a wide range of tasks pertinent to genome analysis. It offers high flexibility and exceptional performance in interactive analysis. The toolkit is open source with an MIT license, implemented in JavaScript, and available at https://genomespy.app/.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.