利用深度学习的单检测器多重成像流式细胞术进行癌细胞分类。

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Zhiwen Wang, Qiao Liu, Jie Zhou, Xuantao Su
{"title":"利用深度学习的单检测器多重成像流式细胞术进行癌细胞分类。","authors":"Zhiwen Wang,&nbsp;Qiao Liu,&nbsp;Jie Zhou,&nbsp;Xuantao Su","doi":"10.1002/cyto.a.24890","DOIUrl":null,"url":null,"abstract":"<p>Imaging flow cytometry, which combines the advantages of flow cytometry and microscopy, has emerged as a powerful tool for cell analysis in various biomedical fields such as cancer detection. In this study, we develop multiplex imaging flow cytometry (mIFC) by employing a spatial wavelength division multiplexing technique. Our mIFC can simultaneously obtain brightfield and multi-color fluorescence images of individual cells in flow, which are excited by a metal halide lamp and measured by a single detector. Statistical analysis results of multiplex imaging experiments with resolution test lens, magnification test lens, and fluorescent microspheres validate the operation of the mIFC with good imaging channel consistency and micron-scale differentiation capabilities. A deep learning method is designed for multiplex image processing that consists of three deep learning networks (U-net, very deep super resolution, and visual geometry group 19). It is demonstrated that the cluster of differentiation 24 (CD24) imaging channel is more sensitive than the brightfield, nucleus, or cancer antigen 125 (CA125) imaging channel in classifying the three types of ovarian cell lines (IOSE80 normal cell, A2780, and OVCAR3 cancer cells). An average accuracy rate of 97.1% is achieved for the classification of these three types of cells by deep learning analysis when all four imaging channels are considered. Our single-detector mIFC is promising for the development of future imaging flow cytometers and for the automatic single-cell analysis with deep learning in various biomedical fields.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 9","pages":"666-676"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-detector multiplex imaging flow cytometry for cancer cell classification with deep learning\",\"authors\":\"Zhiwen Wang,&nbsp;Qiao Liu,&nbsp;Jie Zhou,&nbsp;Xuantao Su\",\"doi\":\"10.1002/cyto.a.24890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Imaging flow cytometry, which combines the advantages of flow cytometry and microscopy, has emerged as a powerful tool for cell analysis in various biomedical fields such as cancer detection. In this study, we develop multiplex imaging flow cytometry (mIFC) by employing a spatial wavelength division multiplexing technique. Our mIFC can simultaneously obtain brightfield and multi-color fluorescence images of individual cells in flow, which are excited by a metal halide lamp and measured by a single detector. Statistical analysis results of multiplex imaging experiments with resolution test lens, magnification test lens, and fluorescent microspheres validate the operation of the mIFC with good imaging channel consistency and micron-scale differentiation capabilities. A deep learning method is designed for multiplex image processing that consists of three deep learning networks (U-net, very deep super resolution, and visual geometry group 19). It is demonstrated that the cluster of differentiation 24 (CD24) imaging channel is more sensitive than the brightfield, nucleus, or cancer antigen 125 (CA125) imaging channel in classifying the three types of ovarian cell lines (IOSE80 normal cell, A2780, and OVCAR3 cancer cells). An average accuracy rate of 97.1% is achieved for the classification of these three types of cells by deep learning analysis when all four imaging channels are considered. Our single-detector mIFC is promising for the development of future imaging flow cytometers and for the automatic single-cell analysis with deep learning in various biomedical fields.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\"105 9\",\"pages\":\"666-676\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24890\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24890","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

成像流式细胞术结合了流式细胞术和显微镜的优点,已成为癌症检测等多个生物医学领域细胞分析的有力工具。在这项研究中,我们利用空间波分复用技术开发了多重成像流式细胞术(mIFC)。我们的 mIFC 可同时获得流动中单个细胞的明视野和多色荧光图像,这些图像由金属卤化物灯激发,并由单个检测器测量。使用分辨率测试透镜、放大率测试透镜和荧光微球进行的多重成像实验的统计分析结果验证了 mIFC 的运行具有良好的成像通道一致性和微米级分辨能力。为多重图像处理设计了一种深度学习方法,该方法由三个深度学习网络(U-net、极深超分辨率和视觉几何组 19)组成。结果表明,在对三种卵巢细胞系(IOSE80 正常细胞、A2780 和 OVCAR3 癌细胞)进行分类时,分化群 24(CD24)成像通道比明场、细胞核或癌抗原 125(CA125)成像通道更灵敏。在考虑所有四个成像通道的情况下,通过深度学习分析对这三类细胞进行分类的平均准确率达到了 97.1%。我们的单检测器 mIFC 对未来成像流式细胞仪的开发以及在各种生物医学领域利用深度学习进行自动单细胞分析大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-detector multiplex imaging flow cytometry for cancer cell classification with deep learning

Imaging flow cytometry, which combines the advantages of flow cytometry and microscopy, has emerged as a powerful tool for cell analysis in various biomedical fields such as cancer detection. In this study, we develop multiplex imaging flow cytometry (mIFC) by employing a spatial wavelength division multiplexing technique. Our mIFC can simultaneously obtain brightfield and multi-color fluorescence images of individual cells in flow, which are excited by a metal halide lamp and measured by a single detector. Statistical analysis results of multiplex imaging experiments with resolution test lens, magnification test lens, and fluorescent microspheres validate the operation of the mIFC with good imaging channel consistency and micron-scale differentiation capabilities. A deep learning method is designed for multiplex image processing that consists of three deep learning networks (U-net, very deep super resolution, and visual geometry group 19). It is demonstrated that the cluster of differentiation 24 (CD24) imaging channel is more sensitive than the brightfield, nucleus, or cancer antigen 125 (CA125) imaging channel in classifying the three types of ovarian cell lines (IOSE80 normal cell, A2780, and OVCAR3 cancer cells). An average accuracy rate of 97.1% is achieved for the classification of these three types of cells by deep learning analysis when all four imaging channels are considered. Our single-detector mIFC is promising for the development of future imaging flow cytometers and for the automatic single-cell analysis with deep learning in various biomedical fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信