Huahong Zhang, Jun Zhang, Hangli Pan, Ke Yang, Chongwei Hu
{"title":"黄芪皂苷 IV 通过抑制 HMGB1/RAGE 轴,使 NF-κb 通路失活,从而促进儿童哮喘患者气道平滑肌细胞的热休克。","authors":"Huahong Zhang, Jun Zhang, Hangli Pan, Ke Yang, Chongwei Hu","doi":"10.1080/08916934.2024.2387100","DOIUrl":null,"url":null,"abstract":"<p><p>Childhood asthma, a common chronic childhood disease, leads to high mortality and morbidity in the world. Airway smooth muscle cells (ASMCs) is a group of multifunctional cells that has been found to be correlated with the pathogenesis of asthma. Astragaloside IV (AS-IV) is a compound extracted from <i>Astragalus membranaceus</i>, which has the anti-asthmatic effect. However, the role of molecular mechanisms regulated by AS-IV in the biological processes of ASMCs in asthma remains unclear. Our current study aims to investigate the downstream molecular mechanism of AS-IV in modulating the aberrant proliferation and pyroptosis of ASMCs in asthma. At first, we determined that the viability of ASMCs could be efficiently suppressed by AS-IV treatment (200 μM). Moreover, AS-IV promoted the pyroptosis and suppressed PDGF-BB-induced aberrant proliferation. Through mechanism investigation, we confirmed that AS-IV could suppress high mobility group box 1 (HMGB1) expression and prevent it from entering the cytoplasm. Subsequently, AS-IV blocked the interaction between HMGB1 and advanced glycosylation end product-specific receptor (RAGE) to inactivate NF-κB pathway. Finally, <i>in vivo</i> experiments demonstrated that AS-IV treatment can alleviate the lung inflammation in asthma mice. Collectively, AS-IV alleviates asthma and suppresses the pyroptosis of AMSCs through blocking HMGB1/RAGE axis to inactivate NF-κB pathway.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":"57 1","pages":"2387100"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astragaloside IV promotes the pyroptosis of airway smooth muscle cells in childhood asthma by suppressing HMGB1/RAGE axis to inactivate NF-κb pathway.\",\"authors\":\"Huahong Zhang, Jun Zhang, Hangli Pan, Ke Yang, Chongwei Hu\",\"doi\":\"10.1080/08916934.2024.2387100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Childhood asthma, a common chronic childhood disease, leads to high mortality and morbidity in the world. Airway smooth muscle cells (ASMCs) is a group of multifunctional cells that has been found to be correlated with the pathogenesis of asthma. Astragaloside IV (AS-IV) is a compound extracted from <i>Astragalus membranaceus</i>, which has the anti-asthmatic effect. However, the role of molecular mechanisms regulated by AS-IV in the biological processes of ASMCs in asthma remains unclear. Our current study aims to investigate the downstream molecular mechanism of AS-IV in modulating the aberrant proliferation and pyroptosis of ASMCs in asthma. At first, we determined that the viability of ASMCs could be efficiently suppressed by AS-IV treatment (200 μM). Moreover, AS-IV promoted the pyroptosis and suppressed PDGF-BB-induced aberrant proliferation. Through mechanism investigation, we confirmed that AS-IV could suppress high mobility group box 1 (HMGB1) expression and prevent it from entering the cytoplasm. Subsequently, AS-IV blocked the interaction between HMGB1 and advanced glycosylation end product-specific receptor (RAGE) to inactivate NF-κB pathway. Finally, <i>in vivo</i> experiments demonstrated that AS-IV treatment can alleviate the lung inflammation in asthma mice. Collectively, AS-IV alleviates asthma and suppresses the pyroptosis of AMSCs through blocking HMGB1/RAGE axis to inactivate NF-κB pathway.</p>\",\"PeriodicalId\":8688,\"journal\":{\"name\":\"Autoimmunity\",\"volume\":\"57 1\",\"pages\":\"2387100\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoimmunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08916934.2024.2387100\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2024.2387100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Astragaloside IV promotes the pyroptosis of airway smooth muscle cells in childhood asthma by suppressing HMGB1/RAGE axis to inactivate NF-κb pathway.
Childhood asthma, a common chronic childhood disease, leads to high mortality and morbidity in the world. Airway smooth muscle cells (ASMCs) is a group of multifunctional cells that has been found to be correlated with the pathogenesis of asthma. Astragaloside IV (AS-IV) is a compound extracted from Astragalus membranaceus, which has the anti-asthmatic effect. However, the role of molecular mechanisms regulated by AS-IV in the biological processes of ASMCs in asthma remains unclear. Our current study aims to investigate the downstream molecular mechanism of AS-IV in modulating the aberrant proliferation and pyroptosis of ASMCs in asthma. At first, we determined that the viability of ASMCs could be efficiently suppressed by AS-IV treatment (200 μM). Moreover, AS-IV promoted the pyroptosis and suppressed PDGF-BB-induced aberrant proliferation. Through mechanism investigation, we confirmed that AS-IV could suppress high mobility group box 1 (HMGB1) expression and prevent it from entering the cytoplasm. Subsequently, AS-IV blocked the interaction between HMGB1 and advanced glycosylation end product-specific receptor (RAGE) to inactivate NF-κB pathway. Finally, in vivo experiments demonstrated that AS-IV treatment can alleviate the lung inflammation in asthma mice. Collectively, AS-IV alleviates asthma and suppresses the pyroptosis of AMSCs through blocking HMGB1/RAGE axis to inactivate NF-κB pathway.
期刊介绍:
Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.