抑制 CDK1/Drp1 介导的线粒体分裂可减轻地塞米松诱导的小梁网细胞外基质沉积。

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xizhi Deng, Min Zhu, Yang Liu, Nan Zhang, Pengyu Zhang, Wen Zeng, Min Ke
{"title":"抑制 CDK1/Drp1 介导的线粒体分裂可减轻地塞米松诱导的小梁网细胞外基质沉积。","authors":"Xizhi Deng, Min Zhu, Yang Liu, Nan Zhang, Pengyu Zhang, Wen Zeng, Min Ke","doi":"10.1089/ars.2023.0502","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), as induced by dexamethasone (Dex), is believed to play an important role in the onset of glucocorticoid-induced glaucoma (GIG). Abnormal ECM deposition is a consequence of mitochondrial dysfunction. We aimed to clarify how mitochondrial dysfunction leads to ECM deposition within the TM and to support the development of novel therapeutic strategies. <b><i>Results:</i></b> In primary human TM cells (pHTMCs) and a Dex acetate-induced murine model of GIG, glucocorticoid administration stimulated both mitochondrial fission and ECM deposition. Excessive mitochondrial fission leads to dysfunction and the overexpression of ECM proteins in pHTMCs. Notably, when pHTMCs were treated with the dynamin-related protein 1 (Drp1) inhibitor Mdivi-1 or with Drp1 siRNA, we observed a marked reduction in Dex-induced mitochondrial damage and ECM proteins <i>in vitro</i>. Furthermore, in C57BL/6J mice, treatment with Mdivi-1 mitigated mitochondrial damage and blocked ECM deposition within the TM. We then used Ro3306 to inhibit the cyclin-dependent kinase (CDK)1-mediated phosphorylation of Drp1 at Ser 616, which restored mitochondrial function and diminished Dex-induced ECM protein expression in pHTMCs. <b><i>Innovation:</i></b> This study illuminates the pathogenic mechanism linking mitochondrial dysfunction to ECM deposition in GIG. Our innovative approach revealed that Dex stimulates mitochondrial fission <i>via</i> CDK1-mediated p-Drp1<sup>s616</sup> overexpression, which drives ECM accumulation. It offered a novel therapeutic strategy for reducing ECM protein expression by inhibiting excessive mitochondrial fission and restoring mitochondrial function. <b><i>Conclusion:</i></b> By targeting the CDK1/Drp1-driven mitochondrial fission process, we can counteract Dex-induced ECM deposition in the TM both <i>in vivo</i> and <i>in vitro</i>.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork.\",\"authors\":\"Xizhi Deng, Min Zhu, Yang Liu, Nan Zhang, Pengyu Zhang, Wen Zeng, Min Ke\",\"doi\":\"10.1089/ars.2023.0502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), as induced by dexamethasone (Dex), is believed to play an important role in the onset of glucocorticoid-induced glaucoma (GIG). Abnormal ECM deposition is a consequence of mitochondrial dysfunction. We aimed to clarify how mitochondrial dysfunction leads to ECM deposition within the TM and to support the development of novel therapeutic strategies. <b><i>Results:</i></b> In primary human TM cells (pHTMCs) and a Dex acetate-induced murine model of GIG, glucocorticoid administration stimulated both mitochondrial fission and ECM deposition. Excessive mitochondrial fission leads to dysfunction and the overexpression of ECM proteins in pHTMCs. Notably, when pHTMCs were treated with the dynamin-related protein 1 (Drp1) inhibitor Mdivi-1 or with Drp1 siRNA, we observed a marked reduction in Dex-induced mitochondrial damage and ECM proteins <i>in vitro</i>. Furthermore, in C57BL/6J mice, treatment with Mdivi-1 mitigated mitochondrial damage and blocked ECM deposition within the TM. We then used Ro3306 to inhibit the cyclin-dependent kinase (CDK)1-mediated phosphorylation of Drp1 at Ser 616, which restored mitochondrial function and diminished Dex-induced ECM protein expression in pHTMCs. <b><i>Innovation:</i></b> This study illuminates the pathogenic mechanism linking mitochondrial dysfunction to ECM deposition in GIG. Our innovative approach revealed that Dex stimulates mitochondrial fission <i>via</i> CDK1-mediated p-Drp1<sup>s616</sup> overexpression, which drives ECM accumulation. It offered a novel therapeutic strategy for reducing ECM protein expression by inhibiting excessive mitochondrial fission and restoring mitochondrial function. <b><i>Conclusion:</i></b> By targeting the CDK1/Drp1-driven mitochondrial fission process, we can counteract Dex-induced ECM deposition in the TM both <i>in vivo</i> and <i>in vitro</i>.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2023.0502\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:在地塞米松(DEX)的诱导下,小梁网(TM)中的细胞外基质(ECM)沉积被认为在糖皮质激素诱发青光眼(GIG)的发病中起着重要作用。ECM 的异常沉积是线粒体功能障碍的结果。我们旨在阐明线粒体功能障碍是如何导致 ECM 在 TM 内沉积的,并支持新型治疗策略的开发:结果:在原代人类 TM 细胞(pHTMCs)和醋酸地塞米松诱导的小鼠 GIG 模型中,糖皮质激素的施用刺激了线粒体的分裂和 ECM 的沉积。线粒体过度裂变会导致 pHTMCs 功能障碍和 ECM 蛋白过度表达。值得注意的是,用 Drp1 抑制剂 Mdivi-1 或 Drp1 siRNA 处理 pHTMCs 时,我们在体外观察到 DEX 诱导的线粒体损伤和 ECM 蛋白明显减少。此外,在 C57BL/6J 小鼠体内,使用 Mdivi-1 可减轻线粒体损伤并阻止 ECM 在 TM 内沉积。然后,我们利用 Ro3306 抑制了 CDK1 介导的 Drp1 在 Ser 616 处的磷酸化,从而恢复了线粒体功能,并减少了 DEX 诱导的 pHTMCs 中 ECM 蛋白的表达:这项研究阐明了线粒体功能障碍与 GIG 中 ECM 沉积之间的致病机制。我们的创新方法揭示了 DEX 通过 CDK1 介导的 p-Drp1s616 过表达刺激线粒体裂变,从而推动 ECM 的积累。这为通过抑制线粒体过度裂变和恢复线粒体功能来减少 ECM 蛋白表达提供了一种新的治疗策略:结论:通过靶向 CDK1/Drp1 驱动的线粒体裂变过程,我们可以在体内和体外抵消 DEX 诱导的 ECM 在 TM 中的沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork.

Aims: Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), as induced by dexamethasone (Dex), is believed to play an important role in the onset of glucocorticoid-induced glaucoma (GIG). Abnormal ECM deposition is a consequence of mitochondrial dysfunction. We aimed to clarify how mitochondrial dysfunction leads to ECM deposition within the TM and to support the development of novel therapeutic strategies. Results: In primary human TM cells (pHTMCs) and a Dex acetate-induced murine model of GIG, glucocorticoid administration stimulated both mitochondrial fission and ECM deposition. Excessive mitochondrial fission leads to dysfunction and the overexpression of ECM proteins in pHTMCs. Notably, when pHTMCs were treated with the dynamin-related protein 1 (Drp1) inhibitor Mdivi-1 or with Drp1 siRNA, we observed a marked reduction in Dex-induced mitochondrial damage and ECM proteins in vitro. Furthermore, in C57BL/6J mice, treatment with Mdivi-1 mitigated mitochondrial damage and blocked ECM deposition within the TM. We then used Ro3306 to inhibit the cyclin-dependent kinase (CDK)1-mediated phosphorylation of Drp1 at Ser 616, which restored mitochondrial function and diminished Dex-induced ECM protein expression in pHTMCs. Innovation: This study illuminates the pathogenic mechanism linking mitochondrial dysfunction to ECM deposition in GIG. Our innovative approach revealed that Dex stimulates mitochondrial fission via CDK1-mediated p-Drp1s616 overexpression, which drives ECM accumulation. It offered a novel therapeutic strategy for reducing ECM protein expression by inhibiting excessive mitochondrial fission and restoring mitochondrial function. Conclusion: By targeting the CDK1/Drp1-driven mitochondrial fission process, we can counteract Dex-induced ECM deposition in the TM both in vivo and in vitro.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信