量值映射和局部映射

Lili Shen, Xiaoye Tang
{"title":"量值映射和局部映射","authors":"Lili Shen, Xiaoye Tang","doi":"arxiv-2408.00393","DOIUrl":null,"url":null,"abstract":"Let $\\mathsf{Q}$ be a commutative and unital quantale. By a $\\mathsf{Q}$-map\nwe mean a left adjoint in the quantaloid of sets and $\\mathsf{Q}$-relations,\nand by a partial $\\mathsf{Q}$-map we refer to a Kleisli morphism with respect\nto the maybe monad on the category $\\mathsf{Q}\\text{-}\\mathbf{Map}$ of sets and\n$\\mathsf{Q}$-maps. It is shown that every $\\mathsf{Q}$-map is symmetric if and\nonly if $\\mathsf{Q}$ is weakly lean, and that every $\\mathsf{Q}$-map is exactly\na map in $\\mathbf{Set}$ if and only $\\mathsf{Q}$ is lean. Moreover, assuming\nthe axiom of choice, it is shown that the category of sets and partial\n$\\mathsf{Q}$-maps is monadic over $\\mathsf{Q}\\text{-}\\mathbf{Map}$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantale-valued maps and partial maps\",\"authors\":\"Lili Shen, Xiaoye Tang\",\"doi\":\"arxiv-2408.00393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathsf{Q}$ be a commutative and unital quantale. By a $\\\\mathsf{Q}$-map\\nwe mean a left adjoint in the quantaloid of sets and $\\\\mathsf{Q}$-relations,\\nand by a partial $\\\\mathsf{Q}$-map we refer to a Kleisli morphism with respect\\nto the maybe monad on the category $\\\\mathsf{Q}\\\\text{-}\\\\mathbf{Map}$ of sets and\\n$\\\\mathsf{Q}$-maps. It is shown that every $\\\\mathsf{Q}$-map is symmetric if and\\nonly if $\\\\mathsf{Q}$ is weakly lean, and that every $\\\\mathsf{Q}$-map is exactly\\na map in $\\\\mathbf{Set}$ if and only $\\\\mathsf{Q}$ is lean. Moreover, assuming\\nthe axiom of choice, it is shown that the category of sets and partial\\n$\\\\mathsf{Q}$-maps is monadic over $\\\\mathsf{Q}\\\\text{-}\\\\mathbf{Map}$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $mathsf{Q}$ 是一个交换和单元量子体。我们所说的$mathsf{Q}$映射是指集合和$mathsf{Q}$关系的量子体中的左邻接,而局部$mathsf{Q}$映射是指关于集合和$mathsf{Q}$映射的类别$mathsf{Q}\text-{}\mathbf{Map}$上的也许单体的Kleisli变形。研究表明,如果并且只有当 $\mathsf{Q}$ 是弱精简的时候,每个 $\mathsf{Q}$ 映射都是对称的;如果并且只有当 $\mathsf{Q}$ 是精简的时候,每个 $\mathsf{Q}$ 映射正是 $\mathbf{Set}$ 中的映射。此外,假设有选择公理,那么可以证明集合和部分$mathsf{Q}$映射的范畴是在$mathsf{Q}\text{-\}mathbf{Map}$之上的一元范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantale-valued maps and partial maps
Let $\mathsf{Q}$ be a commutative and unital quantale. By a $\mathsf{Q}$-map we mean a left adjoint in the quantaloid of sets and $\mathsf{Q}$-relations, and by a partial $\mathsf{Q}$-map we refer to a Kleisli morphism with respect to the maybe monad on the category $\mathsf{Q}\text{-}\mathbf{Map}$ of sets and $\mathsf{Q}$-maps. It is shown that every $\mathsf{Q}$-map is symmetric if and only if $\mathsf{Q}$ is weakly lean, and that every $\mathsf{Q}$-map is exactly a map in $\mathbf{Set}$ if and only $\mathsf{Q}$ is lean. Moreover, assuming the axiom of choice, it is shown that the category of sets and partial $\mathsf{Q}$-maps is monadic over $\mathsf{Q}\text{-}\mathbf{Map}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信