{"title":"量值映射和局部映射","authors":"Lili Shen, Xiaoye Tang","doi":"arxiv-2408.00393","DOIUrl":null,"url":null,"abstract":"Let $\\mathsf{Q}$ be a commutative and unital quantale. By a $\\mathsf{Q}$-map\nwe mean a left adjoint in the quantaloid of sets and $\\mathsf{Q}$-relations,\nand by a partial $\\mathsf{Q}$-map we refer to a Kleisli morphism with respect\nto the maybe monad on the category $\\mathsf{Q}\\text{-}\\mathbf{Map}$ of sets and\n$\\mathsf{Q}$-maps. It is shown that every $\\mathsf{Q}$-map is symmetric if and\nonly if $\\mathsf{Q}$ is weakly lean, and that every $\\mathsf{Q}$-map is exactly\na map in $\\mathbf{Set}$ if and only $\\mathsf{Q}$ is lean. Moreover, assuming\nthe axiom of choice, it is shown that the category of sets and partial\n$\\mathsf{Q}$-maps is monadic over $\\mathsf{Q}\\text{-}\\mathbf{Map}$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantale-valued maps and partial maps\",\"authors\":\"Lili Shen, Xiaoye Tang\",\"doi\":\"arxiv-2408.00393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathsf{Q}$ be a commutative and unital quantale. By a $\\\\mathsf{Q}$-map\\nwe mean a left adjoint in the quantaloid of sets and $\\\\mathsf{Q}$-relations,\\nand by a partial $\\\\mathsf{Q}$-map we refer to a Kleisli morphism with respect\\nto the maybe monad on the category $\\\\mathsf{Q}\\\\text{-}\\\\mathbf{Map}$ of sets and\\n$\\\\mathsf{Q}$-maps. It is shown that every $\\\\mathsf{Q}$-map is symmetric if and\\nonly if $\\\\mathsf{Q}$ is weakly lean, and that every $\\\\mathsf{Q}$-map is exactly\\na map in $\\\\mathbf{Set}$ if and only $\\\\mathsf{Q}$ is lean. Moreover, assuming\\nthe axiom of choice, it is shown that the category of sets and partial\\n$\\\\mathsf{Q}$-maps is monadic over $\\\\mathsf{Q}\\\\text{-}\\\\mathbf{Map}$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $\mathsf{Q}$ be a commutative and unital quantale. By a $\mathsf{Q}$-map
we mean a left adjoint in the quantaloid of sets and $\mathsf{Q}$-relations,
and by a partial $\mathsf{Q}$-map we refer to a Kleisli morphism with respect
to the maybe monad on the category $\mathsf{Q}\text{-}\mathbf{Map}$ of sets and
$\mathsf{Q}$-maps. It is shown that every $\mathsf{Q}$-map is symmetric if and
only if $\mathsf{Q}$ is weakly lean, and that every $\mathsf{Q}$-map is exactly
a map in $\mathbf{Set}$ if and only $\mathsf{Q}$ is lean. Moreover, assuming
the axiom of choice, it is shown that the category of sets and partial
$\mathsf{Q}$-maps is monadic over $\mathsf{Q}\text{-}\mathbf{Map}$.