通过超声波和射频处理从柚子皮中高效提取果胶并对其进行表征

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Jin Wang, Sicheng Du, Hongyue Li, Shaojin Wang, Bo Ling
{"title":"通过超声波和射频处理从柚子皮中高效提取果胶并对其进行表征","authors":"Jin Wang, Sicheng Du, Hongyue Li, Shaojin Wang, Bo Ling","doi":"10.1007/s11947-024-03538-2","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study was to optimize sequential ultrasound-radio frequency–assisted extraction (URAE) of pectin from pomelo peel. Effects of sonication power and time, radio frequency (RF) heating temperature, and time on the pectin yield (PY) were evaluated. Based upon optimized URAE parameters, the yield, physicochemical, and structure properties of pectin recovered from sequential radio frequency-ultrasound–assisted extraction (RUAE), ultrasound-assisted extraction (UAE), and RF-assisted extraction (RFAE) were also compared. A maximal PY of 28.36 ± 0.85% was attained at the optimized URAE conditions including solvent pH of 1.5 (citric acid), sonication at 183 W for 24 min, and RF heating at 87 °C for 23 min. Although all four samples had a high degree of esterification more than 50%, URAE was the lowest. No significant changes were observed in the types of monosaccharides among different samples. Furthermore, all four samples (6.6–10.3 mg GAE/g) showed significantly higher total phenolic content than those of commercial citrus pectin (1.2 mg GAE/g), and among them, RFAE was the highest with the best antioxidant capacity. The water and oil holding capacities of the four samples were between 3.5 to 4.0 and 2.6 to 3.0 g/g, respectively, but there was no significant difference (<i>p</i> &gt; 0.05) between each other. Structure properties indicated that there were no significant differences in the main chemical structures among the four pectin samples. Morphology analysis of URAE showed a more compact, smoother, and flatter surface than that of RUAE and RFAE. The results observed in this paper suggest that sequential URAE is an efficient strategy for the recovery of high-quality pectins.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"55 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Extraction and Characterization of Pectin from Pomelo Peel by Sequential Ultrasonic and Radio Frequency Treatment\",\"authors\":\"Jin Wang, Sicheng Du, Hongyue Li, Shaojin Wang, Bo Ling\",\"doi\":\"10.1007/s11947-024-03538-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this study was to optimize sequential ultrasound-radio frequency–assisted extraction (URAE) of pectin from pomelo peel. Effects of sonication power and time, radio frequency (RF) heating temperature, and time on the pectin yield (PY) were evaluated. Based upon optimized URAE parameters, the yield, physicochemical, and structure properties of pectin recovered from sequential radio frequency-ultrasound–assisted extraction (RUAE), ultrasound-assisted extraction (UAE), and RF-assisted extraction (RFAE) were also compared. A maximal PY of 28.36 ± 0.85% was attained at the optimized URAE conditions including solvent pH of 1.5 (citric acid), sonication at 183 W for 24 min, and RF heating at 87 °C for 23 min. Although all four samples had a high degree of esterification more than 50%, URAE was the lowest. No significant changes were observed in the types of monosaccharides among different samples. Furthermore, all four samples (6.6–10.3 mg GAE/g) showed significantly higher total phenolic content than those of commercial citrus pectin (1.2 mg GAE/g), and among them, RFAE was the highest with the best antioxidant capacity. The water and oil holding capacities of the four samples were between 3.5 to 4.0 and 2.6 to 3.0 g/g, respectively, but there was no significant difference (<i>p</i> &gt; 0.05) between each other. Structure properties indicated that there were no significant differences in the main chemical structures among the four pectin samples. Morphology analysis of URAE showed a more compact, smoother, and flatter surface than that of RUAE and RFAE. The results observed in this paper suggest that sequential URAE is an efficient strategy for the recovery of high-quality pectins.</p>\",\"PeriodicalId\":562,\"journal\":{\"name\":\"Food and Bioprocess Technology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioprocess Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11947-024-03538-2\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03538-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在优化柚子皮果胶的超声-射频辅助连续提取(URAE)。研究评估了超声功率和时间、射频加热温度和时间对果胶产量(PY)的影响。在优化 URAE 参数的基础上,还比较了射频-超声辅助萃取(RUAE)、超声辅助萃取(UAE)和射频辅助萃取(RFAE)的果胶产量、理化性质和结构特性。在优化的 URAE 条件下,包括溶剂 pH 值为 1.5(柠檬酸)、超声功率为 183 W,持续 24 分钟,以及射频加热温度为 87 ℃,持续 23 分钟,PY 的最大值为 28.36 ± 0.85%。虽然所有四种样品的酯化程度都超过了 50%,但 URAE 却最低。不同样品的单糖类型没有明显变化。此外,四种样品的总酚含量(6.6-10.3 毫克 GAE/克)均明显高于商品柑橘果胶(1.2 毫克 GAE/克),其中 RFAE 最高,抗氧化能力最强。四种样品的持水量和持油量分别为 3.5 至 4.0 克/克和 2.6 至 3.0 克/克,但相互之间没有显著差异(p > 0.05)。结构特性表明,四种果胶样品的主要化学结构没有明显差异。形态分析表明,URAE 比 RUAE 和 RFAE 更紧密、更光滑、表面更平整。本文观察到的结果表明,连续 URAE 是一种回收优质果胶的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Extraction and Characterization of Pectin from Pomelo Peel by Sequential Ultrasonic and Radio Frequency Treatment

Efficient Extraction and Characterization of Pectin from Pomelo Peel by Sequential Ultrasonic and Radio Frequency Treatment

The aim of this study was to optimize sequential ultrasound-radio frequency–assisted extraction (URAE) of pectin from pomelo peel. Effects of sonication power and time, radio frequency (RF) heating temperature, and time on the pectin yield (PY) were evaluated. Based upon optimized URAE parameters, the yield, physicochemical, and structure properties of pectin recovered from sequential radio frequency-ultrasound–assisted extraction (RUAE), ultrasound-assisted extraction (UAE), and RF-assisted extraction (RFAE) were also compared. A maximal PY of 28.36 ± 0.85% was attained at the optimized URAE conditions including solvent pH of 1.5 (citric acid), sonication at 183 W for 24 min, and RF heating at 87 °C for 23 min. Although all four samples had a high degree of esterification more than 50%, URAE was the lowest. No significant changes were observed in the types of monosaccharides among different samples. Furthermore, all four samples (6.6–10.3 mg GAE/g) showed significantly higher total phenolic content than those of commercial citrus pectin (1.2 mg GAE/g), and among them, RFAE was the highest with the best antioxidant capacity. The water and oil holding capacities of the four samples were between 3.5 to 4.0 and 2.6 to 3.0 g/g, respectively, but there was no significant difference (p > 0.05) between each other. Structure properties indicated that there were no significant differences in the main chemical structures among the four pectin samples. Morphology analysis of URAE showed a more compact, smoother, and flatter surface than that of RUAE and RFAE. The results observed in this paper suggest that sequential URAE is an efficient strategy for the recovery of high-quality pectins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Bioprocess Technology
Food and Bioprocess Technology 农林科学-食品科技
CiteScore
9.50
自引率
19.60%
发文量
200
审稿时长
2.8 months
期刊介绍: Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community. The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信