利用深度学习对 SDN 网络环境中的 DDoS 攻击流量进行分类

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Urikhimbam Boby Clinton, Nazrul Hoque, Khumukcham Robindro Singh
{"title":"利用深度学习对 SDN 网络环境中的 DDoS 攻击流量进行分类","authors":"Urikhimbam Boby Clinton, Nazrul Hoque, Khumukcham Robindro Singh","doi":"10.1186/s42400-024-00219-7","DOIUrl":null,"url":null,"abstract":"<p>Distributed Denial of Service (DDoS) attack is a major threat to the Internet of Things (IoT), Software Defined Networks (SDN), and Cloud Computing Networks. Due to the tremendous applications of IoT networks, the number of DDoS attacks is increasing significantly, and most sophisticated DDoS attacks are generated through IoT botnets. An IoT botnet-based DDoS attack can disrupt the network quickly with a surge of malicious traffic. Especially in an SDN network, it is important to detect the DDoS attack before it occurs to the SDN controller. DDoS attacks on the centralized controller of the SDN can disrupt the whole network. So, identifying DDoS attacks at the earliest is a critical security measure for network experts and practitioners. In this paper, we analyze the DDoS attack on an SDN environment and develop a method to identify the DDoS attack using Deep Learning (DL). The proposed method converts the captured raw network traffic to image data and classifies the malicious data from normal data. The method is evaluated on our test-bed simulated dataset and two other benchmark datasets. The experimental comparison shows that the proposed method performs better on all three datasets, giving more than 99% classification accuracy.</p>","PeriodicalId":36402,"journal":{"name":"Cybersecurity","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of DDoS attack traffic on SDN network environment using deep learning\",\"authors\":\"Urikhimbam Boby Clinton, Nazrul Hoque, Khumukcham Robindro Singh\",\"doi\":\"10.1186/s42400-024-00219-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Distributed Denial of Service (DDoS) attack is a major threat to the Internet of Things (IoT), Software Defined Networks (SDN), and Cloud Computing Networks. Due to the tremendous applications of IoT networks, the number of DDoS attacks is increasing significantly, and most sophisticated DDoS attacks are generated through IoT botnets. An IoT botnet-based DDoS attack can disrupt the network quickly with a surge of malicious traffic. Especially in an SDN network, it is important to detect the DDoS attack before it occurs to the SDN controller. DDoS attacks on the centralized controller of the SDN can disrupt the whole network. So, identifying DDoS attacks at the earliest is a critical security measure for network experts and practitioners. In this paper, we analyze the DDoS attack on an SDN environment and develop a method to identify the DDoS attack using Deep Learning (DL). The proposed method converts the captured raw network traffic to image data and classifies the malicious data from normal data. The method is evaluated on our test-bed simulated dataset and two other benchmark datasets. The experimental comparison shows that the proposed method performs better on all three datasets, giving more than 99% classification accuracy.</p>\",\"PeriodicalId\":36402,\"journal\":{\"name\":\"Cybersecurity\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42400-024-00219-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42400-024-00219-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

分布式拒绝服务(DDoS)攻击是物联网(IoT)、软件定义网络(SDN)和云计算网络面临的主要威胁。由于物联网网络的巨大应用,DDoS 攻击的数量正在显著增加,而大多数复杂的 DDoS 攻击都是通过物联网僵尸网络产生的。基于物联网僵尸网络的 DDoS 攻击可以通过激增的恶意流量迅速破坏网络。特别是在 SDN 网络中,在 SDN 控制器受到 DDoS 攻击之前检测到这种攻击非常重要。对 SDN 集中控制器的 DDoS 攻击会破坏整个网络。因此,对于网络专家和从业人员来说,尽早识别 DDoS 攻击是一项至关重要的安全措施。本文分析了 SDN 环境中的 DDoS 攻击,并开发了一种利用深度学习(DL)识别 DDoS 攻击的方法。所提出的方法将捕获的原始网络流量转换为图像数据,并从正常数据中对恶意数据进行分类。该方法在我们的测试平台模拟数据集和其他两个基准数据集上进行了评估。实验比较表明,所提出的方法在所有三个数据集上都表现较好,分类准确率超过 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classification of DDoS attack traffic on SDN network environment using deep learning

Classification of DDoS attack traffic on SDN network environment using deep learning

Distributed Denial of Service (DDoS) attack is a major threat to the Internet of Things (IoT), Software Defined Networks (SDN), and Cloud Computing Networks. Due to the tremendous applications of IoT networks, the number of DDoS attacks is increasing significantly, and most sophisticated DDoS attacks are generated through IoT botnets. An IoT botnet-based DDoS attack can disrupt the network quickly with a surge of malicious traffic. Especially in an SDN network, it is important to detect the DDoS attack before it occurs to the SDN controller. DDoS attacks on the centralized controller of the SDN can disrupt the whole network. So, identifying DDoS attacks at the earliest is a critical security measure for network experts and practitioners. In this paper, we analyze the DDoS attack on an SDN environment and develop a method to identify the DDoS attack using Deep Learning (DL). The proposed method converts the captured raw network traffic to image data and classifies the malicious data from normal data. The method is evaluated on our test-bed simulated dataset and two other benchmark datasets. The experimental comparison shows that the proposed method performs better on all three datasets, giving more than 99% classification accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybersecurity
Cybersecurity Computer Science-Information Systems
CiteScore
7.30
自引率
0.00%
发文量
77
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信