基于体素的连通结构拓扑进化优化,实现固有频率优化

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL
Antonio Bacciaglia, Alessandro Ceruti, Alfredo Liverani
{"title":"基于体素的连通结构拓扑进化优化,实现固有频率优化","authors":"Antonio Bacciaglia,&nbsp;Alessandro Ceruti,&nbsp;Alfredo Liverani","doi":"10.1007/s10999-024-09722-8","DOIUrl":null,"url":null,"abstract":"<div><p>The topology optimization methodology is widely utilized in industrial engineering for designing lightweight and efficient components. In this framework, considering natural frequencies is crucial for adequately designing components and structures exposed to dynamic loads, as in aerospace or automotive applications. The scientific community has shown the efficiency of Bi-directional Evolutionary Structural Optimization (BESO), showcasing its ability to converge towards optimal solid-void or bi-material solutions for a wide range of frequency optimization problems in continuum structures. However, these methods show limits when the complexity of the domain volume increases; thus, they are well-suited for academic case studies but may fail when dealing with industrial applications that require more complex shapes. The connectivity of the structures resulting from the optimization also plays a fundamental role in choosing the best optimization approach, as some available commercial and open-source codes nowadays return unfeasible sparse structures. An improved voxel-based BESO algorithm has been developed in this work to cope with current limits in lightweight structure optimization. A significant case study has been developed to evaluate the performances of the new methodology and compare it with existing algorithms. In contrast to previous studies, the method we developed guarantees that the final structure respects constraints on the initial design volume and that the structure’s connection is preserved, thus enabling the manufacturing of the component with Additive Manufacturing technologies. The proposed approach can be complemented by smoothing algorithms to obtain a structure with externally appealing surfaces.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 6","pages":"1209 - 1228"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-024-09722-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Voxel-based evolutionary topological optimization of connected structures for natural frequency optimization\",\"authors\":\"Antonio Bacciaglia,&nbsp;Alessandro Ceruti,&nbsp;Alfredo Liverani\",\"doi\":\"10.1007/s10999-024-09722-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The topology optimization methodology is widely utilized in industrial engineering for designing lightweight and efficient components. In this framework, considering natural frequencies is crucial for adequately designing components and structures exposed to dynamic loads, as in aerospace or automotive applications. The scientific community has shown the efficiency of Bi-directional Evolutionary Structural Optimization (BESO), showcasing its ability to converge towards optimal solid-void or bi-material solutions for a wide range of frequency optimization problems in continuum structures. However, these methods show limits when the complexity of the domain volume increases; thus, they are well-suited for academic case studies but may fail when dealing with industrial applications that require more complex shapes. The connectivity of the structures resulting from the optimization also plays a fundamental role in choosing the best optimization approach, as some available commercial and open-source codes nowadays return unfeasible sparse structures. An improved voxel-based BESO algorithm has been developed in this work to cope with current limits in lightweight structure optimization. A significant case study has been developed to evaluate the performances of the new methodology and compare it with existing algorithms. In contrast to previous studies, the method we developed guarantees that the final structure respects constraints on the initial design volume and that the structure’s connection is preserved, thus enabling the manufacturing of the component with Additive Manufacturing technologies. The proposed approach can be complemented by smoothing algorithms to obtain a structure with externally appealing surfaces.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 6\",\"pages\":\"1209 - 1228\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10999-024-09722-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-024-09722-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-024-09722-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

拓扑优化方法在工业工程中被广泛用于设计轻质高效的部件。在此框架下,考虑自然频率对于充分设计承受动态载荷的部件和结构至关重要,如航空航天或汽车应用中的部件和结构。科学界已经证明了双向进化结构优化(BESO)的高效性,展示了其在连续结构中的各种频率优化问题上收敛到最佳实空或双材料解决方案的能力。然而,当域体积的复杂性增加时,这些方法就会受到限制;因此,它们非常适合学术案例研究,但在处理需要更复杂形状的工业应用时可能会失败。在选择最佳优化方法时,优化后结构的连通性也起着至关重要的作用,因为现在一些可用的商业和开源代码会返回不可行的稀疏结构。本研究开发了一种改进的基于体素的 BESO 算法,以应对当前轻质结构优化的限制。为了评估新方法的性能并将其与现有算法进行比较,我们进行了一项重要的案例研究。与之前的研究相比,我们开发的方法保证了最终结构遵守初始设计体积的约束条件,并保留了结构的连接,从而能够利用增材制造技术制造部件。我们提出的方法可与平滑算法相辅相成,以获得表面美观的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Voxel-based evolutionary topological optimization of connected structures for natural frequency optimization

Voxel-based evolutionary topological optimization of connected structures for natural frequency optimization

The topology optimization methodology is widely utilized in industrial engineering for designing lightweight and efficient components. In this framework, considering natural frequencies is crucial for adequately designing components and structures exposed to dynamic loads, as in aerospace or automotive applications. The scientific community has shown the efficiency of Bi-directional Evolutionary Structural Optimization (BESO), showcasing its ability to converge towards optimal solid-void or bi-material solutions for a wide range of frequency optimization problems in continuum structures. However, these methods show limits when the complexity of the domain volume increases; thus, they are well-suited for academic case studies but may fail when dealing with industrial applications that require more complex shapes. The connectivity of the structures resulting from the optimization also plays a fundamental role in choosing the best optimization approach, as some available commercial and open-source codes nowadays return unfeasible sparse structures. An improved voxel-based BESO algorithm has been developed in this work to cope with current limits in lightweight structure optimization. A significant case study has been developed to evaluate the performances of the new methodology and compare it with existing algorithms. In contrast to previous studies, the method we developed guarantees that the final structure respects constraints on the initial design volume and that the structure’s connection is preserved, thus enabling the manufacturing of the component with Additive Manufacturing technologies. The proposed approach can be complemented by smoothing algorithms to obtain a structure with externally appealing surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信