自由高斯分布的一个特性

IF 0.8 4区 数学 Q2 MATHEMATICS
Raouf Fakhfakh, Fatimah Alshahrani
{"title":"自由高斯分布的一个特性","authors":"Raouf Fakhfakh, Fatimah Alshahrani","doi":"10.1515/gmj-2024-2037","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>⁢</m:mo> <m:mi>ζ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mi>ϑ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>ϑ</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0162.png\"/> <jats:tex-math>{{\\mathcal{K}_{+}}(\\sigma)=\\{\\mathbb{P}_{(\\vartheta,\\sigma)}(d\\zeta):\\vartheta% \\in(0,\\vartheta_{+}(\\sigma))\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Cauchy–Stieltjes Kernel (CSK) family generated by a probability measure σ which is non degenerate and has support bounded from above. Consider the concept of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0072.png\"/> <jats:tex-math>{V_{a}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-transformation of measures introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545] for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0131.png\"/> <jats:tex-math>{a\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0068.png\"/> <jats:tex-math>{V_{a}(\\mathbb{P}_{(\\vartheta,\\sigma)})\\in{\\mathcal{K}_{+}}(\\sigma)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>ℝ</m:mi> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0130.png\"/> <jats:tex-math>{a\\in\\mathbb{R}\\setminus\\{0\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if the measure σ is of the free Gaussian (semicircle) type law up to affinity.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A property of the free Gaussian distribution\",\"authors\":\"Raouf Fakhfakh, Fatimah Alshahrani\",\"doi\":\"10.1515/gmj-2024-2037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>⁢</m:mo> <m:mi>ζ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mi>ϑ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>ϑ</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0162.png\\\"/> <jats:tex-math>{{\\\\mathcal{K}_{+}}(\\\\sigma)=\\\\{\\\\mathbb{P}_{(\\\\vartheta,\\\\sigma)}(d\\\\zeta):\\\\vartheta% \\\\in(0,\\\\vartheta_{+}(\\\\sigma))\\\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Cauchy–Stieltjes Kernel (CSK) family generated by a probability measure σ which is non degenerate and has support bounded from above. Consider the concept of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0072.png\\\"/> <jats:tex-math>{V_{a}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-transformation of measures introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545] for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0131.png\\\"/> <jats:tex-math>{a\\\\in\\\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0068.png\\\"/> <jats:tex-math>{V_{a}(\\\\mathbb{P}_{(\\\\vartheta,\\\\sigma)})\\\\in{\\\\mathcal{K}_{+}}(\\\\sigma)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>ℝ</m:mi> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0130.png\\\"/> <jats:tex-math>{a\\\\in\\\\mathbb{R}\\\\setminus\\\\{0\\\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if the measure σ is of the free Gaussian (semicircle) type law up to affinity.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 𝒦 + ( σ ) = { ϑ , σ ) ( d ζ ) : ϑ ∈ ( 0 , ϑ + ( σ ) ) } {{mathcal{K}_{+}}(\sigma)=\{mathbb{P}_{(\vartheta,\sigma)}(d\zeta):\vartheta% \in(0,\vartheta_{+}(\sigma))\}} 是由概率度量 σ 生成的 Cauchy-Stieltjes Kernel(CSK)族,该概率度量 σ 是非退化的,且有上界支撑。考虑一下 V a {V_{a}} 的概念。 -中引入的度量的 V a {V_{a}} 变换概念[A.D. Krystek 和 L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin.Dimens.Anal.Quantum Probab.Relat.Top.8 2005, 3, 515-545] for a ∈ ℝ {a\in\mathbb{R}} . .我们证明 V a ( 𡆙 ( ϑ , σ ) ) ∈ 𝒦 + ( σ ) {V_{a}(\mathbb{P}_{(\vartheta,\sigma)})\in{mathcal{K}_{+}}(\sigma)} for all a ∈ ℝ ∖ { 0 }. {a\in\mathbb{R}\setminus\{0\}},当且仅当度量 σ 是自由高斯(半圆)类型的亲和力法则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A property of the free Gaussian distribution
Let 𝒦 + ( σ ) = { ( ϑ , σ ) ( d ζ ) : ϑ ( 0 , ϑ + ( σ ) ) } {{\mathcal{K}_{+}}(\sigma)=\{\mathbb{P}_{(\vartheta,\sigma)}(d\zeta):\vartheta% \in(0,\vartheta_{+}(\sigma))\}} be the Cauchy–Stieltjes Kernel (CSK) family generated by a probability measure σ which is non degenerate and has support bounded from above. Consider the concept of V a {V_{a}} -transformation of measures introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545] for a {a\in\mathbb{R}} . We prove that V a ( ( ϑ , σ ) ) 𝒦 + ( σ ) {V_{a}(\mathbb{P}_{(\vartheta,\sigma)})\in{\mathcal{K}_{+}}(\sigma)} for all a { 0 } {a\in\mathbb{R}\setminus\{0\}} if and only if the measure σ is of the free Gaussian (semicircle) type law up to affinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信