求助PDF
{"title":"自由高斯分布的一个特性","authors":"Raouf Fakhfakh, Fatimah Alshahrani","doi":"10.1515/gmj-2024-2037","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mi>ζ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mi>ϑ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>ϑ</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0162.png\"/> <jats:tex-math>{{\\mathcal{K}_{+}}(\\sigma)=\\{\\mathbb{P}_{(\\vartheta,\\sigma)}(d\\zeta):\\vartheta% \\in(0,\\vartheta_{+}(\\sigma))\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Cauchy–Stieltjes Kernel (CSK) family generated by a probability measure σ which is non degenerate and has support bounded from above. Consider the concept of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0072.png\"/> <jats:tex-math>{V_{a}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-transformation of measures introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545] for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0131.png\"/> <jats:tex-math>{a\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0068.png\"/> <jats:tex-math>{V_{a}(\\mathbb{P}_{(\\vartheta,\\sigma)})\\in{\\mathcal{K}_{+}}(\\sigma)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>ℝ</m:mi> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2037_eq_0130.png\"/> <jats:tex-math>{a\\in\\mathbb{R}\\setminus\\{0\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if the measure σ is of the free Gaussian (semicircle) type law up to affinity.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A property of the free Gaussian distribution\",\"authors\":\"Raouf Fakhfakh, Fatimah Alshahrani\",\"doi\":\"10.1515/gmj-2024-2037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mi>ζ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mi>ϑ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>ϑ</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0162.png\\\"/> <jats:tex-math>{{\\\\mathcal{K}_{+}}(\\\\sigma)=\\\\{\\\\mathbb{P}_{(\\\\vartheta,\\\\sigma)}(d\\\\zeta):\\\\vartheta% \\\\in(0,\\\\vartheta_{+}(\\\\sigma))\\\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Cauchy–Stieltjes Kernel (CSK) family generated by a probability measure σ which is non degenerate and has support bounded from above. Consider the concept of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0072.png\\\"/> <jats:tex-math>{V_{a}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-transformation of measures introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545] for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0131.png\\\"/> <jats:tex-math>{a\\\\in\\\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>ℙ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϑ</m:mi> <m:mo>,</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\\\"script\\\">𝒦</m:mi> <m:mo>+</m:mo> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0068.png\\\"/> <jats:tex-math>{V_{a}(\\\\mathbb{P}_{(\\\\vartheta,\\\\sigma)})\\\\in{\\\\mathcal{K}_{+}}(\\\\sigma)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>a</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>ℝ</m:mi> <m:mo>∖</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2037_eq_0130.png\\\"/> <jats:tex-math>{a\\\\in\\\\mathbb{R}\\\\setminus\\\\{0\\\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if the measure σ is of the free Gaussian (semicircle) type law up to affinity.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
设 𝒦 + ( σ ) = { ϑ , σ ) ( d ζ ) : ϑ ∈ ( 0 , ϑ + ( σ ) ) } {{mathcal{K}_{+}}(\sigma)=\{mathbb{P}_{(\vartheta,\sigma)}(d\zeta):\vartheta% \in(0,\vartheta_{+}(\sigma))\}} 是由概率度量 σ 生成的 Cauchy-Stieltjes Kernel(CSK)族,该概率度量 σ 是非退化的,且有上界支撑。考虑一下 V a {V_{a}} 的概念。 -中引入的度量的 V a {V_{a}} 变换概念[A.D. Krystek 和 L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin.Dimens.Anal.Quantum Probab.Relat.Top.8 2005, 3, 515-545] for a ∈ ℝ {a\in\mathbb{R}} . .我们证明 V a ( 𡆙 ( ϑ , σ ) ) ∈ 𝒦 + ( σ ) {V_{a}(\mathbb{P}_{(\vartheta,\sigma)})\in{mathcal{K}_{+}}(\sigma)} for all a ∈ ℝ ∖ { 0 }. {a\in\mathbb{R}\setminus\{0\}},当且仅当度量 σ 是自由高斯(半圆)类型的亲和力法则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A property of the free Gaussian distribution
Let 𝒦 + ( σ ) = { ℙ ( ϑ , σ ) ( d ζ ) : ϑ ∈ ( 0 , ϑ + ( σ ) ) } {{\mathcal{K}_{+}}(\sigma)=\{\mathbb{P}_{(\vartheta,\sigma)}(d\zeta):\vartheta% \in(0,\vartheta_{+}(\sigma))\}} be the Cauchy–Stieltjes Kernel (CSK) family generated by a probability measure σ which is non degenerate and has support bounded from above. Consider the concept of V a {V_{a}} -transformation of measures introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545] for a ∈ ℝ {a\in\mathbb{R}} . We prove that V a ( ℙ ( ϑ , σ ) ) ∈ 𝒦 + ( σ ) {V_{a}(\mathbb{P}_{(\vartheta,\sigma)})\in{\mathcal{K}_{+}}(\sigma)} for all a ∈ ℝ ∖ { 0 } {a\in\mathbb{R}\setminus\{0\}} if and only if the measure σ is of the free Gaussian (semicircle) type law up to affinity.