研究薄域中带有新边界条件的一般弹性系统支配的边界值问题

IF 0.8 4区 数学 Q2 MATHEMATICS
Abla Boulaouad, Youcef Djenaihi, Salah Boulaaras, Hamid Benseridi, Mourad Dilmi
{"title":"研究薄域中带有新边界条件的一般弹性系统支配的边界值问题","authors":"Abla Boulaouad, Youcef Djenaihi, Salah Boulaaras, Hamid Benseridi, Mourad Dilmi","doi":"10.1515/gmj-2024-2044","DOIUrl":null,"url":null,"abstract":"The aim of this work is the study of a nonlinear boundary value problem which theoretically generalizes the Lamé system with disturbance in a thin 3D domain with friction and a generalized boundary condition. For the resolution of the considered problem and after the variational formulation, we construct an operator from the variational problem. Then we prove that this operator has certain properties which allows us to apply the theorem of existence and uniqueness of the solution of variational inequalities of the 2nd kind. Finally, using a change of scale, we transport the variational problem to an equivalent problem defined on a domain independent of the parameter <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ζ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2044_eq_0343.png\"/> <jats:tex-math>{{\\zeta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and subsequently we obtain the limit problem and the generalized weak equations of the initial problem.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of a boundary value problem governed by the general elasticity system with a new boundary conditions in a thin domain\",\"authors\":\"Abla Boulaouad, Youcef Djenaihi, Salah Boulaaras, Hamid Benseridi, Mourad Dilmi\",\"doi\":\"10.1515/gmj-2024-2044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is the study of a nonlinear boundary value problem which theoretically generalizes the Lamé system with disturbance in a thin 3D domain with friction and a generalized boundary condition. For the resolution of the considered problem and after the variational formulation, we construct an operator from the variational problem. Then we prove that this operator has certain properties which allows us to apply the theorem of existence and uniqueness of the solution of variational inequalities of the 2nd kind. Finally, using a change of scale, we transport the variational problem to an equivalent problem defined on a domain independent of the parameter <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ζ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2044_eq_0343.png\\\"/> <jats:tex-math>{{\\\\zeta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and subsequently we obtain the limit problem and the generalized weak equations of the initial problem.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是研究一个非线性边界值问题,该问题从理论上概括了在具有摩擦力和广义边界条件的薄三维域中带有扰动的拉梅系统。为了解决所考虑的问题,在变分公式之后,我们根据变分问题构造了一个算子。然后,我们证明该算子具有某些特性,从而可以应用第二类变分不等式解的存在性和唯一性定理。最后,利用尺度变化,我们将变分问题迁移到定义在独立于参数ζ {{\zeta}}的域上的等价问题,随后我们得到了极限问题和初始问题的广义弱方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of a boundary value problem governed by the general elasticity system with a new boundary conditions in a thin domain
The aim of this work is the study of a nonlinear boundary value problem which theoretically generalizes the Lamé system with disturbance in a thin 3D domain with friction and a generalized boundary condition. For the resolution of the considered problem and after the variational formulation, we construct an operator from the variational problem. Then we prove that this operator has certain properties which allows us to apply the theorem of existence and uniqueness of the solution of variational inequalities of the 2nd kind. Finally, using a change of scale, we transport the variational problem to an equivalent problem defined on a domain independent of the parameter ζ {{\zeta}} and subsequently we obtain the limit problem and the generalized weak equations of the initial problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信