{"title":"涉及无通量边界条件的 p(x)-Laplacian-like 问题的三重弱解","authors":"Khaled Kefi, Nguyen Thanh Chung, Walid Abdelfattah","doi":"10.1515/gmj-2024-2043","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2043_eq_0156.png\"/> <jats:tex-math>{p(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian like problems with indefinite weight involving no flux boundary condition. Using variational techniques and the critical point theorem of Bonanno and Marano [4], we prove the existence of at least three weak solutions to the problem in Sobolev variable exponent spaces.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple weak solution for p(x)-Laplacian like problem involving no flux boundary condition\",\"authors\":\"Khaled Kefi, Nguyen Thanh Chung, Walid Abdelfattah\",\"doi\":\"10.1515/gmj-2024-2043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a class of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2043_eq_0156.png\\\"/> <jats:tex-math>{p(x)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian like problems with indefinite weight involving no flux boundary condition. Using variational techniques and the critical point theorem of Bonanno and Marano [4], we prove the existence of at least three weak solutions to the problem in Sobolev variable exponent spaces.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2043\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑了一类类似于 p ( x ) {p(x)} 的拉普拉斯问题,该问题具有不确定权重,不涉及通量边界条件。利用变分技术以及 Bonanno 和 Marano [4] 的临界点定理,我们证明了该问题在 Sobolev 可变指数空间中至少存在三个弱解。
Triple weak solution for p(x)-Laplacian like problem involving no flux boundary condition
In this paper, we consider a class of p(x){p(x)}-Laplacian like problems with indefinite weight involving no flux boundary condition. Using variational techniques and the critical point theorem of Bonanno and Marano [4], we prove the existence of at least three weak solutions to the problem in Sobolev variable exponent spaces.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.