{"title":"论同质投影平坦芬斯勒度量","authors":"A. Tayebi, B. Najafi","doi":"10.1007/s12220-024-01752-0","DOIUrl":null,"url":null,"abstract":"<p>Recently, Liu-Deng studied projectively flat homogeneous <span>\\((\\alpha , \\beta )\\)</span>-metrics and showed that if these metrics are not Riemannian nor locally Minkowskian, then the Finsler metrics are left invariant Randers metrics on the hyperbolic space <span>\\(\\textbf{H}^n\\)</span> as a solvable Lie group (Liu and Deng in Forum Math 27:3149–3165, 2015). In this paper, we study homogeneous projectively flat (or projective) general Finsler metrics. First, we prove that homogeneous projectively flat Finsler metrics have vanishing <span>\\({{\\bar{\\textbf{E}}}}\\)</span>-curvature if and only if they have almost isotropic S-curvature if and only if they have relatively isotropic L-curvature. In any cases, the Finsler metric reduces to a locally Minkowskian metric or a Riemannian metric of constant sectional curvature. This yields a classification of homogeneous projective Finsler metrics with the above mentioned non-Riemannian curvatures properties. Finally, we show that Liu-Deng’s Randers metrics are Douglas metrics which have not isotropic S-curvature nor relatively isotropic L-curvature.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Homogeneous Projectively Flat Finsler Metrics\",\"authors\":\"A. Tayebi, B. Najafi\",\"doi\":\"10.1007/s12220-024-01752-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, Liu-Deng studied projectively flat homogeneous <span>\\\\((\\\\alpha , \\\\beta )\\\\)</span>-metrics and showed that if these metrics are not Riemannian nor locally Minkowskian, then the Finsler metrics are left invariant Randers metrics on the hyperbolic space <span>\\\\(\\\\textbf{H}^n\\\\)</span> as a solvable Lie group (Liu and Deng in Forum Math 27:3149–3165, 2015). In this paper, we study homogeneous projectively flat (or projective) general Finsler metrics. First, we prove that homogeneous projectively flat Finsler metrics have vanishing <span>\\\\({{\\\\bar{\\\\textbf{E}}}}\\\\)</span>-curvature if and only if they have almost isotropic S-curvature if and only if they have relatively isotropic L-curvature. In any cases, the Finsler metric reduces to a locally Minkowskian metric or a Riemannian metric of constant sectional curvature. This yields a classification of homogeneous projective Finsler metrics with the above mentioned non-Riemannian curvatures properties. Finally, we show that Liu-Deng’s Randers metrics are Douglas metrics which have not isotropic S-curvature nor relatively isotropic L-curvature.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01752-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01752-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近,Liu-Deng 研究了投影平的同质((\alpha , \beta )\)度量,并证明如果这些度量不是黎曼的,也不是局部 Minkowskian 的,那么 Finsler 度量是双曲空间 \(\textbf{H}^n\)上作为可解 Lie 群的左不变 Randers 度量(Liu 和 Deng 在 Forum Math 27:3149-3165, 2015)。本文研究同质射平(或射平)一般 Finsler 度量。首先,我们证明当且仅当同质射影平坦Finsler度量具有几乎各向同性的S曲率时,当且仅当同质射影平坦Finsler度量具有相对各向同性的L曲率时,它们具有消失的\({\{bar\{textbf{E}}}}\)-曲率。在任何情况下,芬斯勒度量都可以简化为局部闵科夫斯基度量或具有恒定截面曲率的黎曼度量。这就产生了具有上述非黎曼曲率性质的同质射影 Finsler 度量的分类。最后,我们证明了刘邓的 Randers 公设是道格拉斯公设,它既没有各向同性的 S 曲率,也没有相对各向同性的 L 曲率。
Recently, Liu-Deng studied projectively flat homogeneous \((\alpha , \beta )\)-metrics and showed that if these metrics are not Riemannian nor locally Minkowskian, then the Finsler metrics are left invariant Randers metrics on the hyperbolic space \(\textbf{H}^n\) as a solvable Lie group (Liu and Deng in Forum Math 27:3149–3165, 2015). In this paper, we study homogeneous projectively flat (or projective) general Finsler metrics. First, we prove that homogeneous projectively flat Finsler metrics have vanishing \({{\bar{\textbf{E}}}}\)-curvature if and only if they have almost isotropic S-curvature if and only if they have relatively isotropic L-curvature. In any cases, the Finsler metric reduces to a locally Minkowskian metric or a Riemannian metric of constant sectional curvature. This yields a classification of homogeneous projective Finsler metrics with the above mentioned non-Riemannian curvatures properties. Finally, we show that Liu-Deng’s Randers metrics are Douglas metrics which have not isotropic S-curvature nor relatively isotropic L-curvature.