{"title":"关于 $${\\mathbb {R}}^{n-m}} times {\\mathbb {R}}^{n}$$ 的反向 Hardy-Littlewood-Sobolev 型不等式","authors":"Xiang Li, Minbo Yang","doi":"10.1007/s00025-024-02227-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are going to establish a reversed Hardy–Littlewood–Sobolev inequality on different dimensional space and prove the existence of extremal functions for the best constant. Furthermore, we investigate the regularity of extremal functions and provide a necessary conditions for the existence of solutions of the integral systems. Finally, we classify the extremal functions.\n</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversed Hardy-Littlewood-Sobolev Type Inequality on $${\\\\mathbb {R}}^{n-m}\\\\times {\\\\mathbb {R}}^{n}$$\",\"authors\":\"Xiang Li, Minbo Yang\",\"doi\":\"10.1007/s00025-024-02227-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are going to establish a reversed Hardy–Littlewood–Sobolev inequality on different dimensional space and prove the existence of extremal functions for the best constant. Furthermore, we investigate the regularity of extremal functions and provide a necessary conditions for the existence of solutions of the integral systems. Finally, we classify the extremal functions.\\n</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02227-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02227-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Reversed Hardy-Littlewood-Sobolev Type Inequality on $${\mathbb {R}}^{n-m}\times {\mathbb {R}}^{n}$$
In this paper, we are going to establish a reversed Hardy–Littlewood–Sobolev inequality on different dimensional space and prove the existence of extremal functions for the best constant. Furthermore, we investigate the regularity of extremal functions and provide a necessary conditions for the existence of solutions of the integral systems. Finally, we classify the extremal functions.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.