曲面和图上的双帧小变换

IF 1.1 3区 数学 Q1 MATHEMATICS
Radhakrushna Sahoo
{"title":"曲面和图上的双帧小变换","authors":"Radhakrushna Sahoo","doi":"10.1007/s00025-024-02247-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the concept of dual framelets on manifolds and its characterization are introduced. The accuracy of the proposed dual framelets transform is determined by sparse representation on graphs. If any pair of the framelet system is associated with filter-bank transform, then compactly supported refinable functions can have vanishing moments at most one and framelet approximation is the order of at most two. An algorithm of decomposition and reconstruction for the dual framelets transform on graph is presented. A new method called dual framelets filter-bank transform (DFFT) is employed, which is faster than the existing method spectral graph wavelet transform (SGWT). The theoretical results along with algorithms for accurate and efficient computation of the DFFT on discrete data sets are provided. Subsequently, some numerical examples are provided to show the importance of DFFT over SGWT on graphs.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Framelets Transform on Manifolds and Graphs\",\"authors\":\"Radhakrushna Sahoo\",\"doi\":\"10.1007/s00025-024-02247-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the concept of dual framelets on manifolds and its characterization are introduced. The accuracy of the proposed dual framelets transform is determined by sparse representation on graphs. If any pair of the framelet system is associated with filter-bank transform, then compactly supported refinable functions can have vanishing moments at most one and framelet approximation is the order of at most two. An algorithm of decomposition and reconstruction for the dual framelets transform on graph is presented. A new method called dual framelets filter-bank transform (DFFT) is employed, which is faster than the existing method spectral graph wavelet transform (SGWT). The theoretical results along with algorithms for accurate and efficient computation of the DFFT on discrete data sets are provided. Subsequently, some numerical examples are provided to show the importance of DFFT over SGWT on graphs.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02247-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02247-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了流形上对偶小帧的概念及其特征。所提出的双小帧变换的精确度由图形上的稀疏表示决定。如果任何一对小帧系统都与滤波库变换相关联,那么紧凑支持的可精炼函数最多只有一个消失矩,而小帧近似最多只有两个阶。本文提出了图上双小帧变换的分解和重构算法。该算法采用了一种称为双小帧滤波库变换(DFFT)的新方法,比现有的谱图小波变换(SGWT)更快。本文提供了在离散数据集上精确高效计算 DFFT 的理论结果和算法。随后,还提供了一些数值示例,以说明 DFFT 在图上比 SGWT 更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual Framelets Transform on Manifolds and Graphs

Dual Framelets Transform on Manifolds and Graphs

In this paper, the concept of dual framelets on manifolds and its characterization are introduced. The accuracy of the proposed dual framelets transform is determined by sparse representation on graphs. If any pair of the framelet system is associated with filter-bank transform, then compactly supported refinable functions can have vanishing moments at most one and framelet approximation is the order of at most two. An algorithm of decomposition and reconstruction for the dual framelets transform on graph is presented. A new method called dual framelets filter-bank transform (DFFT) is employed, which is faster than the existing method spectral graph wavelet transform (SGWT). The theoretical results along with algorithms for accurate and efficient computation of the DFFT on discrete data sets are provided. Subsequently, some numerical examples are provided to show the importance of DFFT over SGWT on graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信