{"title":"基于模型的实时定量超声波和雷达","authors":"Tom Sharon;Yonina C. Eldar","doi":"10.1109/TCI.2024.3436537","DOIUrl":null,"url":null,"abstract":"Ultrasound and radar signals are highly beneficial for medical imaging as they are non-invasive and non-ionizing. Traditional imaging techniques have limitations in terms of contrast and physical interpretation. Quantitative medical imaging can display various physical properties such as speed of sound, density, conductivity, and relative permittivity. This makes it useful for a wider range of applications, including improving cancer detection, diagnosing fatty liver, and fast stroke imaging. However, current quantitative imaging techniques that estimate physical properties from received signals, such as Full Waveform Inversion, are time-consuming and tend to converge to local minima, making them unsuitable for medical imaging. To address these challenges, we propose a neural network based on the physical model of wave propagation, which defines the relationship between the received signals and physical properties. Our network can reconstruct multiple physical properties in less than one second for complex and realistic scenarios, using data from only eight elements. We demonstrate the effectiveness of our approach for both radar and ultrasound signals.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1175-1190"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Model-Based Quantitative Ultrasound and Radar\",\"authors\":\"Tom Sharon;Yonina C. Eldar\",\"doi\":\"10.1109/TCI.2024.3436537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound and radar signals are highly beneficial for medical imaging as they are non-invasive and non-ionizing. Traditional imaging techniques have limitations in terms of contrast and physical interpretation. Quantitative medical imaging can display various physical properties such as speed of sound, density, conductivity, and relative permittivity. This makes it useful for a wider range of applications, including improving cancer detection, diagnosing fatty liver, and fast stroke imaging. However, current quantitative imaging techniques that estimate physical properties from received signals, such as Full Waveform Inversion, are time-consuming and tend to converge to local minima, making them unsuitable for medical imaging. To address these challenges, we propose a neural network based on the physical model of wave propagation, which defines the relationship between the received signals and physical properties. Our network can reconstruct multiple physical properties in less than one second for complex and realistic scenarios, using data from only eight elements. We demonstrate the effectiveness of our approach for both radar and ultrasound signals.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"1175-1190\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10620636/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10620636/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Real-Time Model-Based Quantitative Ultrasound and Radar
Ultrasound and radar signals are highly beneficial for medical imaging as they are non-invasive and non-ionizing. Traditional imaging techniques have limitations in terms of contrast and physical interpretation. Quantitative medical imaging can display various physical properties such as speed of sound, density, conductivity, and relative permittivity. This makes it useful for a wider range of applications, including improving cancer detection, diagnosing fatty liver, and fast stroke imaging. However, current quantitative imaging techniques that estimate physical properties from received signals, such as Full Waveform Inversion, are time-consuming and tend to converge to local minima, making them unsuitable for medical imaging. To address these challenges, we propose a neural network based on the physical model of wave propagation, which defines the relationship between the received signals and physical properties. Our network can reconstruct multiple physical properties in less than one second for complex and realistic scenarios, using data from only eight elements. We demonstrate the effectiveness of our approach for both radar and ultrasound signals.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.