某些线性 q 差分考奇问题的 Gevrey 与 q-Gevrey 渐近展开

IF 1.1 3区 数学 Q1 MATHEMATICS
Alberto Lastra, Stéphane Malek
{"title":"某些线性 q 差分考奇问题的 Gevrey 与 q-Gevrey 渐近展开","authors":"Alberto Lastra, Stéphane Malek","doi":"10.1007/s00025-024-02250-z","DOIUrl":null,"url":null,"abstract":"<p>The asymptotic behavior of the analytic solutions of a family of singularly perturbed <i>q</i>-difference–differential equations in the complex domain is studied. Different asymptotic expansions with respect to the perturbation parameter and to the time variable are provided: one of Gevrey nature, and another of mixed type Gevrey and <i>q</i>-Gevrey. These asymptotic phenomena are observed due to the modification of the norm established on the space of coefficients of the formal solution. The techniques used are based on the adequate path deformation of the difference of two analytic solutions, and the application of several versions of Ramis–Sibuya theorem.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gevrey Versus q-Gevrey Asymptotic Expansions for Some Linear q-Difference–Differential Cauchy Problem\",\"authors\":\"Alberto Lastra, Stéphane Malek\",\"doi\":\"10.1007/s00025-024-02250-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The asymptotic behavior of the analytic solutions of a family of singularly perturbed <i>q</i>-difference–differential equations in the complex domain is studied. Different asymptotic expansions with respect to the perturbation parameter and to the time variable are provided: one of Gevrey nature, and another of mixed type Gevrey and <i>q</i>-Gevrey. These asymptotic phenomena are observed due to the modification of the norm established on the space of coefficients of the formal solution. The techniques used are based on the adequate path deformation of the difference of two analytic solutions, and the application of several versions of Ramis–Sibuya theorem.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02250-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02250-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了复域中奇异扰动 q 差分微分方程族解析解的渐近行为。提供了关于扰动参数和时间变量的不同渐近展开:一种是 Gevrey 性质,另一种是 Gevrey 和 q-Gevrey 混合类型。这些渐近现象是由于对形式解的系数空间所建立的规范进行了修改而观察到的。所使用的技术基于两个解析解之差的充分路径变形,以及 Ramis-Sibuya 定理几个版本的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gevrey Versus q-Gevrey Asymptotic Expansions for Some Linear q-Difference–Differential Cauchy Problem

The asymptotic behavior of the analytic solutions of a family of singularly perturbed q-difference–differential equations in the complex domain is studied. Different asymptotic expansions with respect to the perturbation parameter and to the time variable are provided: one of Gevrey nature, and another of mixed type Gevrey and q-Gevrey. These asymptotic phenomena are observed due to the modification of the norm established on the space of coefficients of the formal solution. The techniques used are based on the adequate path deformation of the difference of two analytic solutions, and the application of several versions of Ramis–Sibuya theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信