增量四元数奇异值分解及其在低秩四元数矩阵补全中的应用

IF 2.6 3区 数学
Yang Xu, Kaixin Gao
{"title":"增量四元数奇异值分解及其在低秩四元数矩阵补全中的应用","authors":"Yang Xu, Kaixin Gao","doi":"10.1007/s40314-024-02874-5","DOIUrl":null,"url":null,"abstract":"<p>Computing the optimal low rank approximations of quaternion matrices is the key target in many quaternion matrix related problems including color images inpainting and recognition, which can be reconstructed by some dominant singular values of quaternion matrices. However, the singular value decomposition of large-scale quaternion matrices requires expensive storage and computational costs. In this paper, we propose an incremental quaternion singular value decomposition (IQSVD) method for a class of quaternion matrices, where the number of columns far exceeds the number of rows, to improve computing efficiency. What’s more, based on IQSVD, we consider the low rank quaternion matrix completion problem and design a proximal linearized minimization algorithm with convergence guarantee to solve it. Numerical experiments on synthetic data and real-world videos illustrate the efficiency of IQSVD and the proposed proximal linearized minimization algorithm involved IQSVD.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"21 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental quaternion singular value decomposition and its application for low rank quaternion matrix completion\",\"authors\":\"Yang Xu, Kaixin Gao\",\"doi\":\"10.1007/s40314-024-02874-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computing the optimal low rank approximations of quaternion matrices is the key target in many quaternion matrix related problems including color images inpainting and recognition, which can be reconstructed by some dominant singular values of quaternion matrices. However, the singular value decomposition of large-scale quaternion matrices requires expensive storage and computational costs. In this paper, we propose an incremental quaternion singular value decomposition (IQSVD) method for a class of quaternion matrices, where the number of columns far exceeds the number of rows, to improve computing efficiency. What’s more, based on IQSVD, we consider the low rank quaternion matrix completion problem and design a proximal linearized minimization algorithm with convergence guarantee to solve it. Numerical experiments on synthetic data and real-world videos illustrate the efficiency of IQSVD and the proposed proximal linearized minimization algorithm involved IQSVD.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02874-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02874-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算四元数矩阵的最优低秩近似值是许多四元数矩阵相关问题(包括彩色图像的绘制和识别)的关键目标,这些问题可以通过四元数矩阵的一些主导奇异值进行重建。然而,大规模四元数矩阵的奇异值分解需要昂贵的存储和计算成本。本文针对列数远大于行数的四元数矩阵,提出了一种增量四元数奇异值分解(IQSVD)方法,以提高计算效率。此外,在 IQSVD 的基础上,我们还考虑了低秩四元数矩阵补全问题,并设计了一种具有收敛性保证的近似线性化最小化算法来解决该问题。在合成数据和真实世界视频上进行的数值实验说明了 IQSVD 和所提出的涉及 IQSVD 的近似线性化最小化算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Incremental quaternion singular value decomposition and its application for low rank quaternion matrix completion

Incremental quaternion singular value decomposition and its application for low rank quaternion matrix completion

Computing the optimal low rank approximations of quaternion matrices is the key target in many quaternion matrix related problems including color images inpainting and recognition, which can be reconstructed by some dominant singular values of quaternion matrices. However, the singular value decomposition of large-scale quaternion matrices requires expensive storage and computational costs. In this paper, we propose an incremental quaternion singular value decomposition (IQSVD) method for a class of quaternion matrices, where the number of columns far exceeds the number of rows, to improve computing efficiency. What’s more, based on IQSVD, we consider the low rank quaternion matrix completion problem and design a proximal linearized minimization algorithm with convergence guarantee to solve it. Numerical experiments on synthetic data and real-world videos illustrate the efficiency of IQSVD and the proposed proximal linearized minimization algorithm involved IQSVD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信