度距矩阵和传输捷径矩阵

IF 2.6 3区 数学
Carlos A. Alfaro, Octavio Zapata
{"title":"度距矩阵和传输捷径矩阵","authors":"Carlos A. Alfaro, Octavio Zapata","doi":"10.1007/s40314-024-02870-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a connected graph with adjacency matrix <i>A</i>(<i>G</i>) and distance matrix <i>D</i>(<i>G</i>). Let <span>\\({{\\,\\textrm{dist}\\,}}(u,v)\\)</span> denote the distance between the pair of vertices <span>\\(u,v\\in V(G)\\)</span>, then the transmission <span>\\({{\\,\\textrm{trs}\\,}}(u)\\)</span> of vertex <i>u</i> is defined as <span>\\(\\sum _{v\\in V(G)}{{\\,\\textrm{dist}\\,}}(u,v)\\)</span>. Let <span>\\({{\\,\\textrm{trs}\\,}}(G)\\)</span> be the diagonal matrix whose diagonal elements are the transmissions of the vertices of <i>G</i>. And, let <span>\\(\\deg (G)\\)</span> be the diagonal matrix whose diagonal elements are the degrees of the vertices of <i>G</i>. In this paper we investigate the Smith normal form (SNF) and the spectrum of the matrices <span>\\(D^{\\deg }_+(G):=\\deg (G)+D(G)\\)</span>, <span>\\(D^{\\deg }(G):=\\deg (G)-D(G)\\)</span>, <span>\\(A^{{{\\,\\textrm{trs}\\,}}}_+(G):={{\\,\\textrm{trs}\\,}}(G)+A(G)\\)</span> and <span>\\(A^{{{\\,\\textrm{trs}\\,}}}(G):={{\\,\\textrm{trs}\\,}}(G)-A(G)\\)</span>. In particular, we explore how good the SNF and the spectrum of these matrices are for determining graphs up to isomorphism. We found that the SNF of <span>\\(A^{{{\\,\\textrm{trs}\\,}}}\\)</span> has an interesting behaviour when compared with other classical matrices. We note that the SNF of <span>\\(A^{{{\\,\\textrm{trs}\\,}}}\\)</span> can be used to compute the structure of the sandpile group of certain graphs. We compute the SNF of <span>\\(D^{\\deg }_+\\)</span>, <span>\\(D^{\\deg }\\)</span>, <span>\\(A^{{{\\,\\textrm{trs}\\,}}}_+\\)</span> and <span>\\(A^{{{\\,\\textrm{trs}\\,}}}\\)</span> for several graph families. We prove that the SNF of <span>\\(D^{\\deg }_+\\)</span>, <span>\\(D^{\\deg }\\)</span>, <span>\\(A^{{{\\,\\textrm{trs}\\,}}}_+\\)</span> and <span>\\(A^{{{\\,\\textrm{trs}\\,}}}\\)</span> determine complete graphs. Finally, we derive some results about the spectrum of <span>\\(D^{\\deg }\\)</span> and <span>\\(A^{{{\\,\\textrm{trs}\\,}}}\\)</span>.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The degree-distance and transmission-adjacency matrices\",\"authors\":\"Carlos A. Alfaro, Octavio Zapata\",\"doi\":\"10.1007/s40314-024-02870-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a connected graph with adjacency matrix <i>A</i>(<i>G</i>) and distance matrix <i>D</i>(<i>G</i>). Let <span>\\\\({{\\\\,\\\\textrm{dist}\\\\,}}(u,v)\\\\)</span> denote the distance between the pair of vertices <span>\\\\(u,v\\\\in V(G)\\\\)</span>, then the transmission <span>\\\\({{\\\\,\\\\textrm{trs}\\\\,}}(u)\\\\)</span> of vertex <i>u</i> is defined as <span>\\\\(\\\\sum _{v\\\\in V(G)}{{\\\\,\\\\textrm{dist}\\\\,}}(u,v)\\\\)</span>. Let <span>\\\\({{\\\\,\\\\textrm{trs}\\\\,}}(G)\\\\)</span> be the diagonal matrix whose diagonal elements are the transmissions of the vertices of <i>G</i>. And, let <span>\\\\(\\\\deg (G)\\\\)</span> be the diagonal matrix whose diagonal elements are the degrees of the vertices of <i>G</i>. In this paper we investigate the Smith normal form (SNF) and the spectrum of the matrices <span>\\\\(D^{\\\\deg }_+(G):=\\\\deg (G)+D(G)\\\\)</span>, <span>\\\\(D^{\\\\deg }(G):=\\\\deg (G)-D(G)\\\\)</span>, <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}_+(G):={{\\\\,\\\\textrm{trs}\\\\,}}(G)+A(G)\\\\)</span> and <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}(G):={{\\\\,\\\\textrm{trs}\\\\,}}(G)-A(G)\\\\)</span>. In particular, we explore how good the SNF and the spectrum of these matrices are for determining graphs up to isomorphism. We found that the SNF of <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}\\\\)</span> has an interesting behaviour when compared with other classical matrices. We note that the SNF of <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}\\\\)</span> can be used to compute the structure of the sandpile group of certain graphs. We compute the SNF of <span>\\\\(D^{\\\\deg }_+\\\\)</span>, <span>\\\\(D^{\\\\deg }\\\\)</span>, <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}_+\\\\)</span> and <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}\\\\)</span> for several graph families. We prove that the SNF of <span>\\\\(D^{\\\\deg }_+\\\\)</span>, <span>\\\\(D^{\\\\deg }\\\\)</span>, <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}_+\\\\)</span> and <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}\\\\)</span> determine complete graphs. Finally, we derive some results about the spectrum of <span>\\\\(D^{\\\\deg }\\\\)</span> and <span>\\\\(A^{{{\\\\,\\\\textrm{trs}\\\\,}}}\\\\)</span>.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02870-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02870-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个连通图,具有邻接矩阵 A(G) 和距离矩阵 D(G)。让 \({{\,\textrm{dist}\,}}(u,v)\) 表示 V(G)\ 中一对顶点 \(u,v\) 之间的距离、那么顶点 u 的传输 \({{\textrm{trs}\,}}(u)\) 定义为 \(\sum _{v\in V(G)}{{\textrm{dist}\,}}(u,v)\).让 \({{\,textrm{trs}\,}}(G)\) 成为对角矩阵,其对角元素是 G 的顶点的传输量;让 \(\deg (G)\) 成为对角矩阵,其对角元素是 G 的顶点的度数。本文将研究矩阵 \(D^{\deg }_+(G):=\deg (G)+D(G)\), \(D^{\deg }(G):=\deg (G)-D(G)\), \(A^{{{\,\textrm{trs}\,}}}_+(G):={{\,\textrm{trs}\,}}(G)+A(G)\) and \(A^{{{\,\textrm{trs}\,}}}(G):={{\,\textrm{trs}\,}}(G)-A(G)\).我们特别探讨了这些矩阵的 SNF 和频谱在确定图的同构性方面有多好。我们发现,与其他经典矩阵相比,A^{{\,\textrm{trs}\,}}\的 SNF 具有有趣的行为。我们注意到 \(A^{{\,\textrm{trs}\,}}} 的 SNF 可以用来计算某些图的沙堆群结构。我们为几个图族计算了 \(D^{\deg }_+\), \(D^{\deg }\), \(A^{{\,\textrm{trs},}}_+\) 和 \(A^{{\,\textrm{trs},}}\) 的 SNF。我们证明了 \(D^{\deg }_+\), \(D^{\deg }\), \(A^{{\,\textrm{trs},}}_+\) 和\(A^{{\,\textrm{trs},}}\) 的 SNF 决定了完整图。最后,我们推导出一些关于 \(D^{\deg }\) 和 \(A^{{\textrm{trs}\,}}} 的谱的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The degree-distance and transmission-adjacency matrices

The degree-distance and transmission-adjacency matrices

Let G be a connected graph with adjacency matrix A(G) and distance matrix D(G). Let \({{\,\textrm{dist}\,}}(u,v)\) denote the distance between the pair of vertices \(u,v\in V(G)\), then the transmission \({{\,\textrm{trs}\,}}(u)\) of vertex u is defined as \(\sum _{v\in V(G)}{{\,\textrm{dist}\,}}(u,v)\). Let \({{\,\textrm{trs}\,}}(G)\) be the diagonal matrix whose diagonal elements are the transmissions of the vertices of G. And, let \(\deg (G)\) be the diagonal matrix whose diagonal elements are the degrees of the vertices of G. In this paper we investigate the Smith normal form (SNF) and the spectrum of the matrices \(D^{\deg }_+(G):=\deg (G)+D(G)\), \(D^{\deg }(G):=\deg (G)-D(G)\), \(A^{{{\,\textrm{trs}\,}}}_+(G):={{\,\textrm{trs}\,}}(G)+A(G)\) and \(A^{{{\,\textrm{trs}\,}}}(G):={{\,\textrm{trs}\,}}(G)-A(G)\). In particular, we explore how good the SNF and the spectrum of these matrices are for determining graphs up to isomorphism. We found that the SNF of \(A^{{{\,\textrm{trs}\,}}}\) has an interesting behaviour when compared with other classical matrices. We note that the SNF of \(A^{{{\,\textrm{trs}\,}}}\) can be used to compute the structure of the sandpile group of certain graphs. We compute the SNF of \(D^{\deg }_+\), \(D^{\deg }\), \(A^{{{\,\textrm{trs}\,}}}_+\) and \(A^{{{\,\textrm{trs}\,}}}\) for several graph families. We prove that the SNF of \(D^{\deg }_+\), \(D^{\deg }\), \(A^{{{\,\textrm{trs}\,}}}_+\) and \(A^{{{\,\textrm{trs}\,}}}\) determine complete graphs. Finally, we derive some results about the spectrum of \(D^{\deg }\) and \(A^{{{\,\textrm{trs}\,}}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信