可解释的、基于深度强化学习的运维决策制定

IF 1.5 4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY
Ryan M. Spangler, Mahsa Raeisinezhad, Daniel G. Cole
{"title":"可解释的、基于深度强化学习的运维决策制定","authors":"Ryan M. Spangler, Mahsa Raeisinezhad, Daniel G. Cole","doi":"10.1080/00295450.2024.2377034","DOIUrl":null,"url":null,"abstract":"This paper presents research that integrates condition monitoring and prognostics with decision making for nuclear power plant operations and maintenance aimed at reducing lifetime maintenance and ...","PeriodicalId":19402,"journal":{"name":"Nuclear Technology","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable, Deep Reinforcement Learning–Based Decision Making for Operations and Maintenance\",\"authors\":\"Ryan M. Spangler, Mahsa Raeisinezhad, Daniel G. Cole\",\"doi\":\"10.1080/00295450.2024.2377034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents research that integrates condition monitoring and prognostics with decision making for nuclear power plant operations and maintenance aimed at reducing lifetime maintenance and ...\",\"PeriodicalId\":19402,\"journal\":{\"name\":\"Nuclear Technology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00295450.2024.2377034\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00295450.2024.2377034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了将状态监测和预报与核电厂运营和维护决策相结合的研究,旨在减少寿命期内的维护和...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable, Deep Reinforcement Learning–Based Decision Making for Operations and Maintenance
This paper presents research that integrates condition monitoring and prognostics with decision making for nuclear power plant operations and maintenance aimed at reducing lifetime maintenance and ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Technology
Nuclear Technology 工程技术-核科学技术
CiteScore
3.40
自引率
6.70%
发文量
116
审稿时长
4-8 weeks
期刊介绍: Nuclear Technology aims to be the leading international publication reporting new information in the practical applications of nuclear science and technology. We publish technical papers, technical notes, critical reviews, rapid communications, book reviews, and letters to the editor on all phases of applications of fundamental research to nuclear technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信