周期性方形和立方晶格上崎岖能谱自旋玻璃张量网络的超优化近似收缩

Adil A. Gangat, Johnnie Gray
{"title":"周期性方形和立方晶格上崎岖能谱自旋玻璃张量网络的超优化近似收缩","authors":"Adil A. Gangat, Johnnie Gray","doi":"arxiv-2407.21287","DOIUrl":null,"url":null,"abstract":"Obtaining the low-energy configurations of spin glasses that have rugged\nenergy landscapes is of direct relevance to combinatorial optimization and\nfundamental science. Search-based heuristics have difficulty with this task due\nto the existence of many local minima that are far from optimal. The work of\n[M. M. Rams et al., Phys. Rev. E 104, 025308 (2021)] demonstrates an\nalternative that can bypass this issue for spin glasses with planar or\nquasi-planar geometry: sampling the Boltzmann distribution via approximate\ncontractions of tensor networks. The computational complexity of this approach\nis due only to the complexity of contracting the network, and is therefore\nindependent of landscape ruggedness. Here we initiate an investigation of how\nto take this approach beyond (quasi-)planar geometry by utilizing\nhyperoptimized approximate contraction of tensor networks [J. Gray and G. K.-L.\nChan, Phys. Rev. X 14, 011009 (2024)]. We perform tests on the periodic square-\nand cubic-lattice, planted-solution Ising spin glasses generated with tile\nplanting [F. Hamze et al., Phys. Rev. E 97, 043303 (2018)] for up to 2304\n(square lattice) and 216 (cubic lattice) spins. For a fixed bond dimension, the\ntime complexity is quadratic. With a bond dimension of only four, over the\ntested system sizes the average solution quality in the most rugged instance\nclass remains at ~1% (square lattice) or ~10% (cubic lattice) of optimal. These\nresults encourage further investigation of tensor network contraction for\nrugged-energy-landscape spin-glass problems, especially given that this\napproach is not limited to the Ising (i.e., binary) or two-body (i.e.,\nquadratic) settings.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperoptimized approximate contraction of tensor networks for rugged-energy-landscape spin glasses on periodic square and cubic lattices\",\"authors\":\"Adil A. Gangat, Johnnie Gray\",\"doi\":\"arxiv-2407.21287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining the low-energy configurations of spin glasses that have rugged\\nenergy landscapes is of direct relevance to combinatorial optimization and\\nfundamental science. Search-based heuristics have difficulty with this task due\\nto the existence of many local minima that are far from optimal. The work of\\n[M. M. Rams et al., Phys. Rev. E 104, 025308 (2021)] demonstrates an\\nalternative that can bypass this issue for spin glasses with planar or\\nquasi-planar geometry: sampling the Boltzmann distribution via approximate\\ncontractions of tensor networks. The computational complexity of this approach\\nis due only to the complexity of contracting the network, and is therefore\\nindependent of landscape ruggedness. Here we initiate an investigation of how\\nto take this approach beyond (quasi-)planar geometry by utilizing\\nhyperoptimized approximate contraction of tensor networks [J. Gray and G. K.-L.\\nChan, Phys. Rev. X 14, 011009 (2024)]. We perform tests on the periodic square-\\nand cubic-lattice, planted-solution Ising spin glasses generated with tile\\nplanting [F. Hamze et al., Phys. Rev. E 97, 043303 (2018)] for up to 2304\\n(square lattice) and 216 (cubic lattice) spins. For a fixed bond dimension, the\\ntime complexity is quadratic. With a bond dimension of only four, over the\\ntested system sizes the average solution quality in the most rugged instance\\nclass remains at ~1% (square lattice) or ~10% (cubic lattice) of optimal. These\\nresults encourage further investigation of tensor network contraction for\\nrugged-energy-landscape spin-glass problems, especially given that this\\napproach is not limited to the Ising (i.e., binary) or two-body (i.e.,\\nquadratic) settings.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

获得具有崎岖能量景观的自旋玻璃低能构型与组合优化和基础科学直接相关。基于搜索的启发式方法很难完成这项任务,因为存在许多远非最优的局部极小值。M. M. Rams 等人,Phys. Rev. E 104, 025308 (2021)]的研究表明,对于具有平面或准平面几何形状的自旋玻璃来说,有一种替代方法可以绕过这个问题:通过张量网络的近似收缩对玻尔兹曼分布进行采样。这种方法的计算复杂性仅仅是由于收缩网络的复杂性造成的,因此与地形的凹凸无关。在这里,我们开始研究如何利用张量网络的近似收缩进行超优化,从而使这种方法超越(准)平面几何[J. Gray and G. K.-L.Chan, Phys. Rev. X 14, 011009 (2024)]。我们对用瓦片种植法生成的周期性方形和立方晶格、种植溶液伊辛自旋玻璃进行了测试[F. Hamze 等,Phys. Rev. E 97, 043303 (2018)],最多可处理 2304 个(方形晶格)和 216 个(立方晶格)自旋。对于固定的键维度,时间复杂度是二次方。在键维仅为四的情况下,在测试的系统大小中,最崎岖实例类的平均解质量保持在最优解的 ~1% (方晶格)或 ~10% (立方晶格)。这些结果鼓励我们进一步研究张量网络收缩对崎岖能谱自旋玻璃问题的影响,特别是考虑到这种方法并不局限于伊辛(即二元)或二体(即四元)设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperoptimized approximate contraction of tensor networks for rugged-energy-landscape spin glasses on periodic square and cubic lattices
Obtaining the low-energy configurations of spin glasses that have rugged energy landscapes is of direct relevance to combinatorial optimization and fundamental science. Search-based heuristics have difficulty with this task due to the existence of many local minima that are far from optimal. The work of [M. M. Rams et al., Phys. Rev. E 104, 025308 (2021)] demonstrates an alternative that can bypass this issue for spin glasses with planar or quasi-planar geometry: sampling the Boltzmann distribution via approximate contractions of tensor networks. The computational complexity of this approach is due only to the complexity of contracting the network, and is therefore independent of landscape ruggedness. Here we initiate an investigation of how to take this approach beyond (quasi-)planar geometry by utilizing hyperoptimized approximate contraction of tensor networks [J. Gray and G. K.-L. Chan, Phys. Rev. X 14, 011009 (2024)]. We perform tests on the periodic square- and cubic-lattice, planted-solution Ising spin glasses generated with tile planting [F. Hamze et al., Phys. Rev. E 97, 043303 (2018)] for up to 2304 (square lattice) and 216 (cubic lattice) spins. For a fixed bond dimension, the time complexity is quadratic. With a bond dimension of only four, over the tested system sizes the average solution quality in the most rugged instance class remains at ~1% (square lattice) or ~10% (cubic lattice) of optimal. These results encourage further investigation of tensor network contraction for rugged-energy-landscape spin-glass problems, especially given that this approach is not limited to the Ising (i.e., binary) or two-body (i.e., quadratic) settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信