{"title":"利用数字图像相关性对钨-铜接头进行热力学分析以实现融合应用","authors":"Younes Belrhiti , Cory Hamelin , David Knowles , Mahmoud Mostafavi","doi":"10.1016/j.fusengdes.2024.114608","DOIUrl":null,"url":null,"abstract":"<div><p>The European DEMOnstration Fusion Power Plant DEMO represents a significant milestone in the progression towards sustainable fusion energy and a critical phase between ITER and commercial fusion reactors, aiming to demonstrate sustained net positive electricity production. Thanks to its properties, tungsten is a promising material for divertor armor. Coupled with copper alloys as heatsinks, they offer robust thermal management properties to deal with intense thermomechanical loads and irradiation damage. Understanding the thermomechanical behaviour of tungsten-copper joints during their application is then necessary for divertor design.</p><p>This study presents experimental analysis on tungsten-copper brazed materials subjected to thermomechanical solicitations to simulate mono-block conditions with heat fluxes expected to reach 20 MW/m<sup>2</sup> and so to face potential creep-fatigue failure. The experimental tests were coupled with Digital Image Correlation up to 400 °C to analyse the thermomechanical behaviour of these joints, providing insights into their thermal behaviour, structural integrity, damage accumulation, joint failure and identification of strains required for creep-fatigue assessment using design codes.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920379624004599/pdfft?md5=ee8b08721a24a7f6608aebc775e5852d&pid=1-s2.0-S0920379624004599-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermomechanical analysis of tungsten-copper joints for fusion applications using digital image correlation\",\"authors\":\"Younes Belrhiti , Cory Hamelin , David Knowles , Mahmoud Mostafavi\",\"doi\":\"10.1016/j.fusengdes.2024.114608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The European DEMOnstration Fusion Power Plant DEMO represents a significant milestone in the progression towards sustainable fusion energy and a critical phase between ITER and commercial fusion reactors, aiming to demonstrate sustained net positive electricity production. Thanks to its properties, tungsten is a promising material for divertor armor. Coupled with copper alloys as heatsinks, they offer robust thermal management properties to deal with intense thermomechanical loads and irradiation damage. Understanding the thermomechanical behaviour of tungsten-copper joints during their application is then necessary for divertor design.</p><p>This study presents experimental analysis on tungsten-copper brazed materials subjected to thermomechanical solicitations to simulate mono-block conditions with heat fluxes expected to reach 20 MW/m<sup>2</sup> and so to face potential creep-fatigue failure. The experimental tests were coupled with Digital Image Correlation up to 400 °C to analyse the thermomechanical behaviour of these joints, providing insights into their thermal behaviour, structural integrity, damage accumulation, joint failure and identification of strains required for creep-fatigue assessment using design codes.</p></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004599/pdfft?md5=ee8b08721a24a7f6608aebc775e5852d&pid=1-s2.0-S0920379624004599-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004599\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004599","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Thermomechanical analysis of tungsten-copper joints for fusion applications using digital image correlation
The European DEMOnstration Fusion Power Plant DEMO represents a significant milestone in the progression towards sustainable fusion energy and a critical phase between ITER and commercial fusion reactors, aiming to demonstrate sustained net positive electricity production. Thanks to its properties, tungsten is a promising material for divertor armor. Coupled with copper alloys as heatsinks, they offer robust thermal management properties to deal with intense thermomechanical loads and irradiation damage. Understanding the thermomechanical behaviour of tungsten-copper joints during their application is then necessary for divertor design.
This study presents experimental analysis on tungsten-copper brazed materials subjected to thermomechanical solicitations to simulate mono-block conditions with heat fluxes expected to reach 20 MW/m2 and so to face potential creep-fatigue failure. The experimental tests were coupled with Digital Image Correlation up to 400 °C to analyse the thermomechanical behaviour of these joints, providing insights into their thermal behaviour, structural integrity, damage accumulation, joint failure and identification of strains required for creep-fatigue assessment using design codes.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.