由ℙn 中超曲面排列产生的雅各布方案

IF 0.9 2区 数学 Q2 MATHEMATICS
Juan Migliore, Uwe Nagel
{"title":"由ℙn 中超曲面排列产生的雅各布方案","authors":"Juan Migliore, Uwe Nagel","doi":"10.1093/imrn/rnae164","DOIUrl":null,"url":null,"abstract":"Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\\sqrt{J}$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"154 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jacobian Schemes Arising From Hypersurface Arrangements in ℙn\",\"authors\":\"Juan Migliore, Uwe Nagel\",\"doi\":\"10.1093/imrn/rnae164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\\\\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\\\\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\\\\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\\\\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\\\\sqrt{J}$.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae164\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

无自由度是超曲面排列的一个重要属性,尽管人们对它的存在还不甚了解。如果 $S/J$ 是 Cohen-Macaulay (CM),其中 $S = K[x_{0},\ldots ,x_{n}]$ 和 $J$ 是 Jacobian 理想,那么 ${mathbb{P}}^{n}$ 中的超曲面排列就是自由的。我们研究了三个相关的非混合理想:$J^{top}$,高度两个主成分的交集;$J^{top}$ 的根;当 $f_{i}$ 平滑时,我们还研究了 $\sqrt{J}$。在温和的假设条件下,我们证明了这些理想是 CM。这建立了申克早先从超平面排列到超曲面排列结果的全面推广。如果在投影 3 美元空间中的排列假设失败,哈特肖恩-拉奥模块就会衡量 CMness 的失败。我们建立了 $J^{top}$ 和 $\sqrt{J}$ 的偶数联络类的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jacobian Schemes Arising From Hypersurface Arrangements in ℙn
Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\sqrt{J}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信