{"title":"由ℙn 中超曲面排列产生的雅各布方案","authors":"Juan Migliore, Uwe Nagel","doi":"10.1093/imrn/rnae164","DOIUrl":null,"url":null,"abstract":"Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\\sqrt{J}$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"154 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jacobian Schemes Arising From Hypersurface Arrangements in ℙn\",\"authors\":\"Juan Migliore, Uwe Nagel\",\"doi\":\"10.1093/imrn/rnae164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\\\\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\\\\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\\\\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\\\\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\\\\sqrt{J}$.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae164\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Jacobian Schemes Arising From Hypersurface Arrangements in ℙn
Freeness is an important property of a hypersurface arrangement, although its presence is not well understood. A hypersurface arrangement in ${\mathbb{P}}^{n}$ is free if $S/J$ is Cohen–Macaulay (CM), where $S = K[x_{0},\ldots ,x_{n}]$ and $J$ is the Jacobian ideal. We study three related unmixed ideals: $J^{top}$, the intersection of height two primary components, $\sqrt{J^{top}}$, the radical of $J^{top}$, and when the $f_{i}$ are smooth we also study $\sqrt{J}$. Under mild hypotheses, we show that these ideals are CM. This establishes a full generalization of an earlier result with Schenck from hyperplane arrangements to hypersurface arrangements. If the hypotheses fail for an arrangement in projective $3$-space, the Hartshorne–Rao module measures the failure of CMness. We establish consequences for the even liaison classes of $J^{top}$ and $\sqrt{J}$.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.