基于深度学习的多尺度自适应弱光图像增强技术

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Taotao Cao, Taile Peng, Hao Wang, Xiaotong Zhu, Jia Guo, Zhen Zhang
{"title":"基于深度学习的多尺度自适应弱光图像增强技术","authors":"Taotao Cao, Taile Peng, Hao Wang, Xiaotong Zhu, Jia Guo, Zhen Zhang","doi":"10.1117/1.jei.33.4.043033","DOIUrl":null,"url":null,"abstract":"Existing low-light image enhancement (LLIE) technologies have difficulty balancing image quality and computational efficiency. In addition, they amplify the noise and artifacts of the original image when enhancing deep dark images. Therefore, this study proposes a multi-scale adaptive low-light image enhancement method based on deep learning. Specifically, feature extraction and noise reduction modules are designed. First, a more effective low-light enhancement effect is achieved by extracting the details of the dark area of an image. Depth extraction of the details of dark areas is realized through the design of a residual attention mechanism and nonlocal neural network in the UNet model to obtain a visual-attention map of the dark area. Second, the designed noise network obtains the real noise map of the low-light image. Subsequently, the enhanced network uses the dark area visual-attention and noise maps in conjunction with the original low-light image as inputs to adaptively realize LLIE. The LLIE results using the proposed network achieve excellent performance in terms of color, tone, contrast, and detail. Finally, quantitative and visual experiments on multiple test benchmark datasets demonstrate that the proposed method is superior to current state-of-the-art methods in terms of dark area details, image quality enhancement, and image noise reduction. The results of this study can help to address the real world challenges of low-light image quality, such as low contrast, poor visibility, and high noise levels.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale adaptive low-light image enhancement based on deep learning\",\"authors\":\"Taotao Cao, Taile Peng, Hao Wang, Xiaotong Zhu, Jia Guo, Zhen Zhang\",\"doi\":\"10.1117/1.jei.33.4.043033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing low-light image enhancement (LLIE) technologies have difficulty balancing image quality and computational efficiency. In addition, they amplify the noise and artifacts of the original image when enhancing deep dark images. Therefore, this study proposes a multi-scale adaptive low-light image enhancement method based on deep learning. Specifically, feature extraction and noise reduction modules are designed. First, a more effective low-light enhancement effect is achieved by extracting the details of the dark area of an image. Depth extraction of the details of dark areas is realized through the design of a residual attention mechanism and nonlocal neural network in the UNet model to obtain a visual-attention map of the dark area. Second, the designed noise network obtains the real noise map of the low-light image. Subsequently, the enhanced network uses the dark area visual-attention and noise maps in conjunction with the original low-light image as inputs to adaptively realize LLIE. The LLIE results using the proposed network achieve excellent performance in terms of color, tone, contrast, and detail. Finally, quantitative and visual experiments on multiple test benchmark datasets demonstrate that the proposed method is superior to current state-of-the-art methods in terms of dark area details, image quality enhancement, and image noise reduction. The results of this study can help to address the real world challenges of low-light image quality, such as low contrast, poor visibility, and high noise levels.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043033\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

现有的低照度图像增强(LLIE)技术难以在图像质量和计算效率之间取得平衡。此外,在增强深暗图像时,它们会放大原始图像的噪声和伪影。因此,本研究提出了一种基于深度学习的多尺度自适应低照度图像增强方法。具体来说,设计了特征提取和降噪模块。首先,通过提取图像暗部细节,实现更有效的弱光增强效果。暗部细节的深度提取是通过在 UNet 模型中设计残留注意力机制和非局部神经网络来实现的,从而获得暗部的视觉注意力图谱。其次,设计的噪声网络可获得弱光图像的真实噪声图。随后,增强型网络将暗区视觉注意力图和噪声图与原始弱光图像一起作为输入,自适应地实现 LLIE。使用所提出的网络实现的 LLIE 结果在色彩、色调、对比度和细节方面都表现出色。最后,在多个测试基准数据集上进行的定量和视觉实验表明,所提出的方法在暗区细节、图像质量增强和图像降噪方面都优于目前最先进的方法。这项研究的结果有助于解决低对比度、可视性差和高噪声水平等低照度图像质量方面的现实挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale adaptive low-light image enhancement based on deep learning
Existing low-light image enhancement (LLIE) technologies have difficulty balancing image quality and computational efficiency. In addition, they amplify the noise and artifacts of the original image when enhancing deep dark images. Therefore, this study proposes a multi-scale adaptive low-light image enhancement method based on deep learning. Specifically, feature extraction and noise reduction modules are designed. First, a more effective low-light enhancement effect is achieved by extracting the details of the dark area of an image. Depth extraction of the details of dark areas is realized through the design of a residual attention mechanism and nonlocal neural network in the UNet model to obtain a visual-attention map of the dark area. Second, the designed noise network obtains the real noise map of the low-light image. Subsequently, the enhanced network uses the dark area visual-attention and noise maps in conjunction with the original low-light image as inputs to adaptively realize LLIE. The LLIE results using the proposed network achieve excellent performance in terms of color, tone, contrast, and detail. Finally, quantitative and visual experiments on multiple test benchmark datasets demonstrate that the proposed method is superior to current state-of-the-art methods in terms of dark area details, image quality enhancement, and image noise reduction. The results of this study can help to address the real world challenges of low-light image quality, such as low contrast, poor visibility, and high noise levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信