利用 Sr-Nd-Hf 同位素追踪大陆弧岩浆中的下地壳污染:应用于阿达梅洛岩浆岩的原位与块岩相结合的方法

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Manuel Pimenta Silva, Andrea Giuliani, Urs Schaltegger, Massimo Chiaradia, Alexandra Nowak, Blair Schoene, Peter Ulmer, Othmar Müntener
{"title":"利用 Sr-Nd-Hf 同位素追踪大陆弧岩浆中的下地壳污染:应用于阿达梅洛岩浆岩的原位与块岩相结合的方法","authors":"Manuel Pimenta Silva, Andrea Giuliani, Urs Schaltegger, Massimo Chiaradia, Alexandra Nowak, Blair Schoene, Peter Ulmer, Othmar Müntener","doi":"10.1093/petrology/egae084","DOIUrl":null,"url":null,"abstract":"The incremental construction of plutons characterises magmatic activity in arc settings, where new continental crust is produced. This polyphasic growth entails interactions with one or more crustal components, which modulate the geochemical and isotopic compositions of the newly formed crust. However, the early stages of magmatism are not always preserved due to obliteration by later magmatic pulses. Spatial migration of magmatism during the construction of the Adamello batholith (Northern Italy) enables the examination of the early pulses of pluton formation, thus allowing a time-integrated study of the relative importance of crystallisation-differentiation and contamination in a continental arc setting. We conducted a detailed textural, major and trace element, and Sr isotopic study of plagioclase from the first intrusive pulses of the Adamello batholith, combined with new major, trace element and Sr-Nd isotopic analyses of bulk rock samples across the entire Adamello batholith. We selected well-characterised samples with published CA-ID-TIMS 206Pb-238U ages and Hf isotopic composition for zircons. Strontium isotopes in plagioclase from the same samples were determined by laser ablation multi-collector ICP-MS. The tonalitic samples in the early magmatic stages show elevated but constant Sr isotopic compositions despite large variations in anorthite contents (An90 to An13), indicating that crustal contamination occurred before significant differentiation. Invariant bulk-rock 87Sr/86Sr with variable SiO2 in all superunits of the Adamello batholith further supports contamination preceding significant melt differentiation. Contamination by lower crustal basement lithologies is due to the increasing thermal anomaly triggered by consecutive magmatic injections coupled with the heterogeneous and less restitic nature of the basement in the early stage of the magmatic system (i.e. before consumption of fusible components). In addition, we observe significant variability in crustal contamination proxies (e.g. 87Sr/86Srplag, 87Sr/86Srbulk, εNdbulk, εHfzircon) during the initial phases of magmatism. This variability likely reflects the uneven distribution of positive thermal anomalies in the lower crust during early magmatic stages as well as the diverse lithological and isotopic makeup of the lower crust. The processes identified in our case study are pertinent to continental arc magmatism, particularly where magmas interact with a metapelitic lower crust.","PeriodicalId":16751,"journal":{"name":"Journal of Petrology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing Lower Crustal Contamination in Continental Arc Magmas Using Sr-Nd-Hf Isotopes: a Combined in-Situ and Bulk Rock Approach Applied to the Adamello Batholith\",\"authors\":\"Manuel Pimenta Silva, Andrea Giuliani, Urs Schaltegger, Massimo Chiaradia, Alexandra Nowak, Blair Schoene, Peter Ulmer, Othmar Müntener\",\"doi\":\"10.1093/petrology/egae084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incremental construction of plutons characterises magmatic activity in arc settings, where new continental crust is produced. This polyphasic growth entails interactions with one or more crustal components, which modulate the geochemical and isotopic compositions of the newly formed crust. However, the early stages of magmatism are not always preserved due to obliteration by later magmatic pulses. Spatial migration of magmatism during the construction of the Adamello batholith (Northern Italy) enables the examination of the early pulses of pluton formation, thus allowing a time-integrated study of the relative importance of crystallisation-differentiation and contamination in a continental arc setting. We conducted a detailed textural, major and trace element, and Sr isotopic study of plagioclase from the first intrusive pulses of the Adamello batholith, combined with new major, trace element and Sr-Nd isotopic analyses of bulk rock samples across the entire Adamello batholith. We selected well-characterised samples with published CA-ID-TIMS 206Pb-238U ages and Hf isotopic composition for zircons. Strontium isotopes in plagioclase from the same samples were determined by laser ablation multi-collector ICP-MS. The tonalitic samples in the early magmatic stages show elevated but constant Sr isotopic compositions despite large variations in anorthite contents (An90 to An13), indicating that crustal contamination occurred before significant differentiation. Invariant bulk-rock 87Sr/86Sr with variable SiO2 in all superunits of the Adamello batholith further supports contamination preceding significant melt differentiation. Contamination by lower crustal basement lithologies is due to the increasing thermal anomaly triggered by consecutive magmatic injections coupled with the heterogeneous and less restitic nature of the basement in the early stage of the magmatic system (i.e. before consumption of fusible components). In addition, we observe significant variability in crustal contamination proxies (e.g. 87Sr/86Srplag, 87Sr/86Srbulk, εNdbulk, εHfzircon) during the initial phases of magmatism. This variability likely reflects the uneven distribution of positive thermal anomalies in the lower crust during early magmatic stages as well as the diverse lithological and isotopic makeup of the lower crust. The processes identified in our case study are pertinent to continental arc magmatism, particularly where magmas interact with a metapelitic lower crust.\",\"PeriodicalId\":16751,\"journal\":{\"name\":\"Journal of Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/petrology/egae084\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/petrology/egae084","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在产生新大陆地壳的弧形环境中,岩浆活动的特点是柱状构造的递增。这种多相生长需要与一个或多个地壳成分相互作用,从而改变新形成地壳的地球化学和同位素组成。然而,由于后期岩浆脉冲的湮没,岩浆活动的早期阶段并不总能保存下来。在阿达梅洛浴成岩(意大利北部)的构造过程中,岩浆活动的空间迁移使我们能够对岩浆形成的早期脉冲进行研究,从而能够对大陆弧环境中结晶-分异和污染的相对重要性进行时间整合研究。我们对来自阿达梅洛岩床第一批侵入脉冲的斜长石进行了详细的纹理、主要元素、痕量元素和锶同位素研究,并对整个阿达梅洛岩床的大块岩石样本进行了新的主要元素、痕量元素和锶钕同位素分析。我们选择了具有已公布的 CA-ID-TIMS 206Pb-238U 年龄和锆石 Hf 同位素组成的特征良好的样本。通过激光烧蚀多收集器 ICP-MS 测定了相同样品中斜长石的锶同位素。尽管阳起石含量(An90 至 An13)变化很大,但早期岩浆阶段的黑云母样品却显示出较高但恒定的锶同位素组成,这表明在显著分化之前发生了地壳污染。在阿达梅洛浴成岩的所有超单元中,块岩87Sr/86Sr不变,SiO2可变,这进一步证明了在熔体显著分化之前的污染。下地壳基底岩性的污染是由于连续的岩浆注入引发的热异常不断增加,以及岩浆系统早期(即可熔成分消耗之前)基底的异质性和较少的重岩性造成的。此外,我们还观察到岩浆活动初期地壳污染代用指标(如 87Sr/86Srplag、87Sr/86Srbulk、εNdbulk、εHfzircon)的显著变化。这种变化很可能反映了岩浆早期阶段下地壳正热异常的不均匀分布,以及下地壳岩性和同位素构成的多样性。我们的案例研究确定的过程与大陆弧岩浆活动有关,特别是岩浆与偏闪长岩下地壳相互作用的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracing Lower Crustal Contamination in Continental Arc Magmas Using Sr-Nd-Hf Isotopes: a Combined in-Situ and Bulk Rock Approach Applied to the Adamello Batholith
The incremental construction of plutons characterises magmatic activity in arc settings, where new continental crust is produced. This polyphasic growth entails interactions with one or more crustal components, which modulate the geochemical and isotopic compositions of the newly formed crust. However, the early stages of magmatism are not always preserved due to obliteration by later magmatic pulses. Spatial migration of magmatism during the construction of the Adamello batholith (Northern Italy) enables the examination of the early pulses of pluton formation, thus allowing a time-integrated study of the relative importance of crystallisation-differentiation and contamination in a continental arc setting. We conducted a detailed textural, major and trace element, and Sr isotopic study of plagioclase from the first intrusive pulses of the Adamello batholith, combined with new major, trace element and Sr-Nd isotopic analyses of bulk rock samples across the entire Adamello batholith. We selected well-characterised samples with published CA-ID-TIMS 206Pb-238U ages and Hf isotopic composition for zircons. Strontium isotopes in plagioclase from the same samples were determined by laser ablation multi-collector ICP-MS. The tonalitic samples in the early magmatic stages show elevated but constant Sr isotopic compositions despite large variations in anorthite contents (An90 to An13), indicating that crustal contamination occurred before significant differentiation. Invariant bulk-rock 87Sr/86Sr with variable SiO2 in all superunits of the Adamello batholith further supports contamination preceding significant melt differentiation. Contamination by lower crustal basement lithologies is due to the increasing thermal anomaly triggered by consecutive magmatic injections coupled with the heterogeneous and less restitic nature of the basement in the early stage of the magmatic system (i.e. before consumption of fusible components). In addition, we observe significant variability in crustal contamination proxies (e.g. 87Sr/86Srplag, 87Sr/86Srbulk, εNdbulk, εHfzircon) during the initial phases of magmatism. This variability likely reflects the uneven distribution of positive thermal anomalies in the lower crust during early magmatic stages as well as the diverse lithological and isotopic makeup of the lower crust. The processes identified in our case study are pertinent to continental arc magmatism, particularly where magmas interact with a metapelitic lower crust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Petrology
Journal of Petrology 地学-地球化学与地球物理
CiteScore
6.90
自引率
12.80%
发文量
117
审稿时长
12 months
期刊介绍: The Journal of Petrology provides an international forum for the publication of high quality research in the broad field of igneous and metamorphic petrology and petrogenesis. Papers published cover a vast range of topics in areas such as major element, trace element and isotope geochemistry and geochronology applied to petrogenesis; experimental petrology; processes of magma generation, differentiation and emplacement; quantitative studies of rock-forming minerals and their paragenesis; regional studies of igneous and meta morphic rocks which contribute to the solution of fundamental petrological problems; theoretical modelling of petrogenetic processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信