Manuel Pimenta Silva, Andrea Giuliani, Urs Schaltegger, Massimo Chiaradia, Alexandra Nowak, Blair Schoene, Peter Ulmer, Othmar Müntener
{"title":"利用 Sr-Nd-Hf 同位素追踪大陆弧岩浆中的下地壳污染:应用于阿达梅洛岩浆岩的原位与块岩相结合的方法","authors":"Manuel Pimenta Silva, Andrea Giuliani, Urs Schaltegger, Massimo Chiaradia, Alexandra Nowak, Blair Schoene, Peter Ulmer, Othmar Müntener","doi":"10.1093/petrology/egae084","DOIUrl":null,"url":null,"abstract":"The incremental construction of plutons characterises magmatic activity in arc settings, where new continental crust is produced. This polyphasic growth entails interactions with one or more crustal components, which modulate the geochemical and isotopic compositions of the newly formed crust. However, the early stages of magmatism are not always preserved due to obliteration by later magmatic pulses. Spatial migration of magmatism during the construction of the Adamello batholith (Northern Italy) enables the examination of the early pulses of pluton formation, thus allowing a time-integrated study of the relative importance of crystallisation-differentiation and contamination in a continental arc setting. We conducted a detailed textural, major and trace element, and Sr isotopic study of plagioclase from the first intrusive pulses of the Adamello batholith, combined with new major, trace element and Sr-Nd isotopic analyses of bulk rock samples across the entire Adamello batholith. We selected well-characterised samples with published CA-ID-TIMS 206Pb-238U ages and Hf isotopic composition for zircons. Strontium isotopes in plagioclase from the same samples were determined by laser ablation multi-collector ICP-MS. The tonalitic samples in the early magmatic stages show elevated but constant Sr isotopic compositions despite large variations in anorthite contents (An90 to An13), indicating that crustal contamination occurred before significant differentiation. Invariant bulk-rock 87Sr/86Sr with variable SiO2 in all superunits of the Adamello batholith further supports contamination preceding significant melt differentiation. Contamination by lower crustal basement lithologies is due to the increasing thermal anomaly triggered by consecutive magmatic injections coupled with the heterogeneous and less restitic nature of the basement in the early stage of the magmatic system (i.e. before consumption of fusible components). In addition, we observe significant variability in crustal contamination proxies (e.g. 87Sr/86Srplag, 87Sr/86Srbulk, εNdbulk, εHfzircon) during the initial phases of magmatism. This variability likely reflects the uneven distribution of positive thermal anomalies in the lower crust during early magmatic stages as well as the diverse lithological and isotopic makeup of the lower crust. The processes identified in our case study are pertinent to continental arc magmatism, particularly where magmas interact with a metapelitic lower crust.","PeriodicalId":16751,"journal":{"name":"Journal of Petrology","volume":"49 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing Lower Crustal Contamination in Continental Arc Magmas Using Sr-Nd-Hf Isotopes: a Combined in-Situ and Bulk Rock Approach Applied to the Adamello Batholith\",\"authors\":\"Manuel Pimenta Silva, Andrea Giuliani, Urs Schaltegger, Massimo Chiaradia, Alexandra Nowak, Blair Schoene, Peter Ulmer, Othmar Müntener\",\"doi\":\"10.1093/petrology/egae084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incremental construction of plutons characterises magmatic activity in arc settings, where new continental crust is produced. This polyphasic growth entails interactions with one or more crustal components, which modulate the geochemical and isotopic compositions of the newly formed crust. However, the early stages of magmatism are not always preserved due to obliteration by later magmatic pulses. Spatial migration of magmatism during the construction of the Adamello batholith (Northern Italy) enables the examination of the early pulses of pluton formation, thus allowing a time-integrated study of the relative importance of crystallisation-differentiation and contamination in a continental arc setting. We conducted a detailed textural, major and trace element, and Sr isotopic study of plagioclase from the first intrusive pulses of the Adamello batholith, combined with new major, trace element and Sr-Nd isotopic analyses of bulk rock samples across the entire Adamello batholith. We selected well-characterised samples with published CA-ID-TIMS 206Pb-238U ages and Hf isotopic composition for zircons. Strontium isotopes in plagioclase from the same samples were determined by laser ablation multi-collector ICP-MS. The tonalitic samples in the early magmatic stages show elevated but constant Sr isotopic compositions despite large variations in anorthite contents (An90 to An13), indicating that crustal contamination occurred before significant differentiation. Invariant bulk-rock 87Sr/86Sr with variable SiO2 in all superunits of the Adamello batholith further supports contamination preceding significant melt differentiation. Contamination by lower crustal basement lithologies is due to the increasing thermal anomaly triggered by consecutive magmatic injections coupled with the heterogeneous and less restitic nature of the basement in the early stage of the magmatic system (i.e. before consumption of fusible components). In addition, we observe significant variability in crustal contamination proxies (e.g. 87Sr/86Srplag, 87Sr/86Srbulk, εNdbulk, εHfzircon) during the initial phases of magmatism. This variability likely reflects the uneven distribution of positive thermal anomalies in the lower crust during early magmatic stages as well as the diverse lithological and isotopic makeup of the lower crust. The processes identified in our case study are pertinent to continental arc magmatism, particularly where magmas interact with a metapelitic lower crust.\",\"PeriodicalId\":16751,\"journal\":{\"name\":\"Journal of Petrology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/petrology/egae084\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/petrology/egae084","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Tracing Lower Crustal Contamination in Continental Arc Magmas Using Sr-Nd-Hf Isotopes: a Combined in-Situ and Bulk Rock Approach Applied to the Adamello Batholith
The incremental construction of plutons characterises magmatic activity in arc settings, where new continental crust is produced. This polyphasic growth entails interactions with one or more crustal components, which modulate the geochemical and isotopic compositions of the newly formed crust. However, the early stages of magmatism are not always preserved due to obliteration by later magmatic pulses. Spatial migration of magmatism during the construction of the Adamello batholith (Northern Italy) enables the examination of the early pulses of pluton formation, thus allowing a time-integrated study of the relative importance of crystallisation-differentiation and contamination in a continental arc setting. We conducted a detailed textural, major and trace element, and Sr isotopic study of plagioclase from the first intrusive pulses of the Adamello batholith, combined with new major, trace element and Sr-Nd isotopic analyses of bulk rock samples across the entire Adamello batholith. We selected well-characterised samples with published CA-ID-TIMS 206Pb-238U ages and Hf isotopic composition for zircons. Strontium isotopes in plagioclase from the same samples were determined by laser ablation multi-collector ICP-MS. The tonalitic samples in the early magmatic stages show elevated but constant Sr isotopic compositions despite large variations in anorthite contents (An90 to An13), indicating that crustal contamination occurred before significant differentiation. Invariant bulk-rock 87Sr/86Sr with variable SiO2 in all superunits of the Adamello batholith further supports contamination preceding significant melt differentiation. Contamination by lower crustal basement lithologies is due to the increasing thermal anomaly triggered by consecutive magmatic injections coupled with the heterogeneous and less restitic nature of the basement in the early stage of the magmatic system (i.e. before consumption of fusible components). In addition, we observe significant variability in crustal contamination proxies (e.g. 87Sr/86Srplag, 87Sr/86Srbulk, εNdbulk, εHfzircon) during the initial phases of magmatism. This variability likely reflects the uneven distribution of positive thermal anomalies in the lower crust during early magmatic stages as well as the diverse lithological and isotopic makeup of the lower crust. The processes identified in our case study are pertinent to continental arc magmatism, particularly where magmas interact with a metapelitic lower crust.
期刊介绍:
The Journal of Petrology provides an international forum for the publication of high quality research in the broad field of igneous and metamorphic petrology and petrogenesis. Papers published cover a vast range of topics in areas such as major element, trace element and isotope geochemistry and geochronology applied to petrogenesis; experimental petrology; processes of magma generation, differentiation and emplacement; quantitative studies of rock-forming minerals and their paragenesis; regional studies of igneous and meta morphic rocks which contribute to the solution of fundamental petrological problems; theoretical modelling of petrogenetic processes.