走向动机霍赫希尔德同构的动机格林列斯谱序列

Federico Ernesto Mocchetti
{"title":"走向动机霍赫希尔德同构的动机格林列斯谱序列","authors":"Federico Ernesto Mocchetti","doi":"arxiv-2408.00338","DOIUrl":null,"url":null,"abstract":"We define a motivic Greenlees spectral sequence by characterising an\nassociated $t$-structure. We then examine a motivic version of topological\nHochschild homology for the motivic cohomology spectrum modulo a prime number\n$p$. Finally, we use the motivic Greenlees spectral sequence to determine the\nhomotopy ring of a related spectrum, given that the base field is algebraically\nclosed with a characteristic that is coprime to $p$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A motivic Greenlees spectral sequence towards motivic Hochschild homology\",\"authors\":\"Federico Ernesto Mocchetti\",\"doi\":\"arxiv-2408.00338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a motivic Greenlees spectral sequence by characterising an\\nassociated $t$-structure. We then examine a motivic version of topological\\nHochschild homology for the motivic cohomology spectrum modulo a prime number\\n$p$. Finally, we use the motivic Greenlees spectral sequence to determine the\\nhomotopy ring of a related spectrum, given that the base field is algebraically\\nclosed with a characteristic that is coprime to $p$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过描述相关的 $t$ 结构来定义动机格林列斯谱序列。然后,我们研究了动机同调谱 modulo a prime number$p$的拓扑霍赫希尔德同调的动机版本。最后,我们利用动机格林列斯谱序列来确定相关谱的同调环,条件是基域是代数封闭的,其特征与$p$共乘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A motivic Greenlees spectral sequence towards motivic Hochschild homology
We define a motivic Greenlees spectral sequence by characterising an associated $t$-structure. We then examine a motivic version of topological Hochschild homology for the motivic cohomology spectrum modulo a prime number $p$. Finally, we use the motivic Greenlees spectral sequence to determine the homotopy ring of a related spectrum, given that the base field is algebraically closed with a characteristic that is coprime to $p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信