{"title":"走向动机霍赫希尔德同构的动机格林列斯谱序列","authors":"Federico Ernesto Mocchetti","doi":"arxiv-2408.00338","DOIUrl":null,"url":null,"abstract":"We define a motivic Greenlees spectral sequence by characterising an\nassociated $t$-structure. We then examine a motivic version of topological\nHochschild homology for the motivic cohomology spectrum modulo a prime number\n$p$. Finally, we use the motivic Greenlees spectral sequence to determine the\nhomotopy ring of a related spectrum, given that the base field is algebraically\nclosed with a characteristic that is coprime to $p$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A motivic Greenlees spectral sequence towards motivic Hochschild homology\",\"authors\":\"Federico Ernesto Mocchetti\",\"doi\":\"arxiv-2408.00338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a motivic Greenlees spectral sequence by characterising an\\nassociated $t$-structure. We then examine a motivic version of topological\\nHochschild homology for the motivic cohomology spectrum modulo a prime number\\n$p$. Finally, we use the motivic Greenlees spectral sequence to determine the\\nhomotopy ring of a related spectrum, given that the base field is algebraically\\nclosed with a characteristic that is coprime to $p$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们通过描述相关的 $t$ 结构来定义动机格林列斯谱序列。然后,我们研究了动机同调谱 modulo a prime number$p$的拓扑霍赫希尔德同调的动机版本。最后,我们利用动机格林列斯谱序列来确定相关谱的同调环,条件是基域是代数封闭的,其特征与$p$共乘。
A motivic Greenlees spectral sequence towards motivic Hochschild homology
We define a motivic Greenlees spectral sequence by characterising an
associated $t$-structure. We then examine a motivic version of topological
Hochschild homology for the motivic cohomology spectrum modulo a prime number
$p$. Finally, we use the motivic Greenlees spectral sequence to determine the
homotopy ring of a related spectrum, given that the base field is algebraically
closed with a characteristic that is coprime to $p$.