{"title":"不可定向表面上的曲线系统","authors":"Xiao Chen","doi":"arxiv-2408.00369","DOIUrl":null,"url":null,"abstract":"We show that the order of the cardinality of maximal complete $1$-systems of\nloops on non-orientable surfaces is $\\sim |\\chi|^{2}$. In particular, we\ndetermine the exact cardinality of maximal complete $1$-systems of loops on\npunctured projective planes. To prove these results, we show that the\ncardinality of maximal systems of arcs pairwise-intersecting at most once on a\nnon-orientable surface is $2|\\chi|(|\\chi|+1)$.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems of curves on non-orientable surfaces\",\"authors\":\"Xiao Chen\",\"doi\":\"arxiv-2408.00369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the order of the cardinality of maximal complete $1$-systems of\\nloops on non-orientable surfaces is $\\\\sim |\\\\chi|^{2}$. In particular, we\\ndetermine the exact cardinality of maximal complete $1$-systems of loops on\\npunctured projective planes. To prove these results, we show that the\\ncardinality of maximal systems of arcs pairwise-intersecting at most once on a\\nnon-orientable surface is $2|\\\\chi|(|\\\\chi|+1)$.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the order of the cardinality of maximal complete $1$-systems of
loops on non-orientable surfaces is $\sim |\chi|^{2}$. In particular, we
determine the exact cardinality of maximal complete $1$-systems of loops on
punctured projective planes. To prove these results, we show that the
cardinality of maximal systems of arcs pairwise-intersecting at most once on a
non-orientable surface is $2|\chi|(|\chi|+1)$.