非豪斯多夫$\mathbb{Z}_2$多核群集的$*$数组的简单性

C. Farsi, N. S. Larsen, J. Packer, N. Thiem
{"title":"非豪斯多夫$\\mathbb{Z}_2$多核群集的$*$数组的简单性","authors":"C. Farsi, N. S. Larsen, J. Packer, N. Thiem","doi":"arxiv-2408.00442","DOIUrl":null,"url":null,"abstract":"We study simplicity of $C^*$-algebras arising from self-similar groups of\n$\\mathbb{Z}_2$-multispinal type, a generalization of the Grigorchuk case whose\nsimplicity was first proved by L. Clark, R. Exel, E. Pardo, C. Starling, and A.\nSims in 2019, and we prove results generalizing theirs. Our first main result\nis a sufficient condition for simplicity of the Steinberg algebra satisfying\nconditions modeled on the behavior of the groupoid associated to the first\nGrigorchuk group. This closely resembles conditions found by B. Steinberg and\nN. Szak\\'acs. As a key ingredient we identify an infinite family of\n$2-(2q-1,q-1,q/2-1)$-designs, where $q$ is a positive even integer. We then\ndeduce the simplicity of the associated $C^*$-algebra, which is our second main\nresult. Results of similar type were considered by B. Steinberg and N.\nSzak\\'acs in 2021, and later by K. Yoshida, but their methods did not follow\nthe original methods of the five authors.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplicity of $*$-algebras of non-Hausdorff $\\\\mathbb{Z}_2$-multispinal groupoids\",\"authors\":\"C. Farsi, N. S. Larsen, J. Packer, N. Thiem\",\"doi\":\"arxiv-2408.00442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study simplicity of $C^*$-algebras arising from self-similar groups of\\n$\\\\mathbb{Z}_2$-multispinal type, a generalization of the Grigorchuk case whose\\nsimplicity was first proved by L. Clark, R. Exel, E. Pardo, C. Starling, and A.\\nSims in 2019, and we prove results generalizing theirs. Our first main result\\nis a sufficient condition for simplicity of the Steinberg algebra satisfying\\nconditions modeled on the behavior of the groupoid associated to the first\\nGrigorchuk group. This closely resembles conditions found by B. Steinberg and\\nN. Szak\\\\'acs. As a key ingredient we identify an infinite family of\\n$2-(2q-1,q-1,q/2-1)$-designs, where $q$ is a positive even integer. We then\\ndeduce the simplicity of the associated $C^*$-algebra, which is our second main\\nresult. Results of similar type were considered by B. Steinberg and N.\\nSzak\\\\'acs in 2021, and later by K. Yoshida, but their methods did not follow\\nthe original methods of the five authors.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究由$\mathbb{Z}_2$-multispinal类型的自相似群产生的$C^*$-代数的简单性,这是格里高丘克情况的广义化,其简单性由L. Clark、R. Exel、E. Pardo、C. Starling和A.Sims于2019年首次证明,我们证明了他们的结果的广义化。我们的第一个主要结果是斯坦伯格代数简单性的充分条件,它满足以与第一个格里高丘克群相关联的类群的行为为模型的条件。这与 B. Steinberg 和 N. Szak\'acs 发现的条件非常相似。Szak\'acs 发现的条件。作为关键要素,我们确定了$2-(2q-1,q-1,q/2-1)$设计的无穷系列,其中$q$为正偶数整数。然后,我们推导出相关$C^*$代数的简单性,这是我们的第二个主要结果。B. Steinberg 和 N.Szak\'acs 在 2021 年以及后来的 K. Yoshida 也考虑过类似的结果,但他们的方法并没有沿用五位作者最初的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplicity of $*$-algebras of non-Hausdorff $\mathbb{Z}_2$-multispinal groupoids
We study simplicity of $C^*$-algebras arising from self-similar groups of $\mathbb{Z}_2$-multispinal type, a generalization of the Grigorchuk case whose simplicity was first proved by L. Clark, R. Exel, E. Pardo, C. Starling, and A. Sims in 2019, and we prove results generalizing theirs. Our first main result is a sufficient condition for simplicity of the Steinberg algebra satisfying conditions modeled on the behavior of the groupoid associated to the first Grigorchuk group. This closely resembles conditions found by B. Steinberg and N. Szak\'acs. As a key ingredient we identify an infinite family of $2-(2q-1,q-1,q/2-1)$-designs, where $q$ is a positive even integer. We then deduce the simplicity of the associated $C^*$-algebra, which is our second main result. Results of similar type were considered by B. Steinberg and N. Szak\'acs in 2021, and later by K. Yoshida, but their methods did not follow the original methods of the five authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信