关于带算子 $${D}_{x} 的 (SSIE) 的可解性{\mathbf { * }}} ({ s}_{ R}^{\{textbf{0}}} } ) _{{{{\Sigma }}- {{lambda I}}{{ \subset }}{ s}_{ R}^{{{{0}}} $$ ,涉及算子的精细谱

IF 0.9 3区 数学 Q2 MATHEMATICS
Bruno de Malafosse, Eberhard Malkowsky, Vladinir Rakočević
{"title":"关于带算子 $${D}_{x} 的 (SSIE) 的可解性{\\mathbf { * }}} ({ s}_{ R}^{\\{textbf{0}}} } ) _{{{{\\Sigma }}- {{lambda I}}{{ \\subset }}{ s}_{ R}^{{{{0}}} $$ ,涉及算子的精细谱","authors":"Bruno de Malafosse, Eberhard Malkowsky, Vladinir Rakočević","doi":"10.1007/s00010-024-01111-y","DOIUrl":null,"url":null,"abstract":"<p>Given any sequence <span>\\(a=(a_{n})_{n\\ge 1}\\)</span> of positive real numbers and any set <i>E</i> of complex sequences, we write <span>\\(E_{a}\\)</span> for the set of all sequences <span>\\(y=(y_{n})_{n\\ge 1}\\)</span> such that <span>\\(y/a=(y_{n}/a_{n})_{n\\ge 1}\\in E\\)</span>; in particular, <span>\\(c_{a}\\)</span> denotes the set of all sequences <i>y</i> such that <i>y</i>/<i>a</i> converges. In this paper, we use the sum operator <span>\\(\\Sigma \\)</span>, defined by <span>\\(\\Sigma _{n}y=\\sum _{k=1}^{n}y_{k}\\)</span> for all sequences <i>y</i>, and we determine its spectrum over each of the sets <span>\\(s_{a}=(\\ell _{\\infty })_{a}\\)</span> and <span>\\(s_{a}^{0}=(c_{0})_{a}\\)</span>. Then we determine the point, residual and continuous spectra of the operator <span>\\(D_{1/R}\\Sigma D_{R}\\)</span>, with <span>\\(R&gt;1\\)</span>, and we solve the special <i>sequence spaces inclusion equations (SSIE),</i> (which are determined by an inclusion, for which each term is a <i>sum </i>or<i> a sum of products of sets of the form </i><span>\\((E_{a})_{\\mathcal {T}}\\)</span><i> and </i> <span>\\(( E_{f(x)})_{\\mathcal {T}}\\)</span> where <i>f</i> maps <span>\\(U^{+}\\)</span> to itself, <i>E</i> is any linear space of sequences and <span>\\(\\mathcal {T}\\)</span> is a triangle) <span>\\(D_{x}*(s_{R}^{0})_{\\Sigma -\\lambda I}\\subset s_{R}^{0}\\)</span>, using the fine spectrum of this operator. The solvability of this (SSIE) consists in determining, for each <span>\\(\\lambda \\in \\mathbb {C}\\)</span>, the set of all sequences <span>\\(x\\in \\omega \\)</span> that satisfy the next statement. For every <span>\\(y\\in \\omega \\)</span>, we have </p><span>$$\\begin{aligned} \\lim _{n\\rightarrow \\infty }\\frac{1}{R^{n}}\\left( \\sum _{k=1}^{n-1}y_{k}-\\lambda y_{n}\\right) =0\\Longrightarrow \\lim _{n\\rightarrow \\infty }x_{n}\\left( \\frac{y_{n}}{R^{n}}\\right) =0\\text {.} \\end{aligned}$$</span><p>Then, we solve this (SSIE) for <span>\\(R=1\\)</span>. Finally, we solve each (SSIE) <span>\\(D_{x}*( E_{R})_{\\Sigma -\\lambda I}\\subset s_{R}\\)</span>, where <i>E</i> is successively equal to <span>\\(c_{0}\\)</span>, <i>c</i>, and <span>\\(\\ell _{\\infty }\\)</span>.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solvability of the (SSIE) with operator $${D}_{x} {\\\\mathbf { * }}\\\\left( { s}_{ R}^{{\\\\textbf{0}}} \\\\right) _{{{{\\\\Sigma }} - {\\\\lambda I}}} {{ \\\\subset }}{ s}_{ R}^{{{0}}} $$ , involving the fine spectrum of an operator\",\"authors\":\"Bruno de Malafosse, Eberhard Malkowsky, Vladinir Rakočević\",\"doi\":\"10.1007/s00010-024-01111-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given any sequence <span>\\\\(a=(a_{n})_{n\\\\ge 1}\\\\)</span> of positive real numbers and any set <i>E</i> of complex sequences, we write <span>\\\\(E_{a}\\\\)</span> for the set of all sequences <span>\\\\(y=(y_{n})_{n\\\\ge 1}\\\\)</span> such that <span>\\\\(y/a=(y_{n}/a_{n})_{n\\\\ge 1}\\\\in E\\\\)</span>; in particular, <span>\\\\(c_{a}\\\\)</span> denotes the set of all sequences <i>y</i> such that <i>y</i>/<i>a</i> converges. In this paper, we use the sum operator <span>\\\\(\\\\Sigma \\\\)</span>, defined by <span>\\\\(\\\\Sigma _{n}y=\\\\sum _{k=1}^{n}y_{k}\\\\)</span> for all sequences <i>y</i>, and we determine its spectrum over each of the sets <span>\\\\(s_{a}=(\\\\ell _{\\\\infty })_{a}\\\\)</span> and <span>\\\\(s_{a}^{0}=(c_{0})_{a}\\\\)</span>. Then we determine the point, residual and continuous spectra of the operator <span>\\\\(D_{1/R}\\\\Sigma D_{R}\\\\)</span>, with <span>\\\\(R&gt;1\\\\)</span>, and we solve the special <i>sequence spaces inclusion equations (SSIE),</i> (which are determined by an inclusion, for which each term is a <i>sum </i>or<i> a sum of products of sets of the form </i><span>\\\\((E_{a})_{\\\\mathcal {T}}\\\\)</span><i> and </i> <span>\\\\(( E_{f(x)})_{\\\\mathcal {T}}\\\\)</span> where <i>f</i> maps <span>\\\\(U^{+}\\\\)</span> to itself, <i>E</i> is any linear space of sequences and <span>\\\\(\\\\mathcal {T}\\\\)</span> is a triangle) <span>\\\\(D_{x}*(s_{R}^{0})_{\\\\Sigma -\\\\lambda I}\\\\subset s_{R}^{0}\\\\)</span>, using the fine spectrum of this operator. The solvability of this (SSIE) consists in determining, for each <span>\\\\(\\\\lambda \\\\in \\\\mathbb {C}\\\\)</span>, the set of all sequences <span>\\\\(x\\\\in \\\\omega \\\\)</span> that satisfy the next statement. For every <span>\\\\(y\\\\in \\\\omega \\\\)</span>, we have </p><span>$$\\\\begin{aligned} \\\\lim _{n\\\\rightarrow \\\\infty }\\\\frac{1}{R^{n}}\\\\left( \\\\sum _{k=1}^{n-1}y_{k}-\\\\lambda y_{n}\\\\right) =0\\\\Longrightarrow \\\\lim _{n\\\\rightarrow \\\\infty }x_{n}\\\\left( \\\\frac{y_{n}}{R^{n}}\\\\right) =0\\\\text {.} \\\\end{aligned}$$</span><p>Then, we solve this (SSIE) for <span>\\\\(R=1\\\\)</span>. Finally, we solve each (SSIE) <span>\\\\(D_{x}*( E_{R})_{\\\\Sigma -\\\\lambda I}\\\\subset s_{R}\\\\)</span>, where <i>E</i> is successively equal to <span>\\\\(c_{0}\\\\)</span>, <i>c</i>, and <span>\\\\(\\\\ell _{\\\\infty }\\\\)</span>.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01111-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01111-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定正实数的任意序列\(a=(a_{n})_{n\ge 1}\)和复序列的任意集合 E,我们将所有序列\(y=(y_{n})_{n\ge 1}\)的集合写成\(E_{a}\),使得\(y/a=(y_{n}/a_{n})_{n\ge 1}\in E\);特别地,\(c_{a}\)表示使 y/a 收敛的所有序列 y 的集合。在本文中,我们使用和算子(\Sigma \),其定义为:对于所有序列 y,和算子(\Sigma _{n}y=\sum _{k=1}^{n}y_{k}\ ),我们确定它在每个集合 \(s_{a}=(\ell _{infty })_{a}\) 和 \(s_{a}^{0}=(c_{0})_{a}\) 上的谱。然后我们确定算子 \(D_{1/R}\Sigma D_{R}\) 的点、残差和连续谱,其中 \(R>;1),我们求解特殊序列空间包含方程(SSIE),(这些方程由包含决定,其中每个项都是形式为 \((E_{a})_{\mathcal {T}}\) 和 \(( E_{f(x)})_{\mathcal {T}}\) 的集合的乘积之和或乘积之和,其中 f 将 \(U^{+}\) 映射到自身、E 是任意序列的线性空间,\(\mathcal {T}\) 是一个三角形)\(D_{x}*(s_{R}^{0})_{\Sigma -\lambda I}\subset s_{R}^{0}\),使用这个算子的精细谱。这个(SSIE)的可解性在于,对于每一个(\(\lambda \in \mathbb {C}\),确定所有满足下一个陈述的序列(\(x\\in \omega \)的集合。对于每一个序列,我们都有$$begin{aligned}(开始对齐)\lim _{n\rightarrow \infty }\frac{1}{R^{n}}\left( ( 和 _{k=1}^{n-1}y_{k}-\lambda y_{n}\right ) =0\Longrightarrow \lim _{n\rightarrow \infty }x_{n}\left( ( \frac{y_{n}}{R^{n}}\right ) =0\text {.}\end{aligned}$$然后,我们对 \(R=1\)求解这个(SSIE)。最后,我们求解每个(SSIE)(D_{x}*( E_{R})_{Sigma -\lambda I} (子集 s_{R})),其中 E 依次等于(c_{0})、c 和(\ell _{infty })。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the solvability of the (SSIE) with operator $${D}_{x} {\mathbf { * }}\left( { s}_{ R}^{{\textbf{0}}} \right) _{{{{\Sigma }} - {\lambda I}}} {{ \subset }}{ s}_{ R}^{{{0}}} $$ , involving the fine spectrum of an operator

Given any sequence \(a=(a_{n})_{n\ge 1}\) of positive real numbers and any set E of complex sequences, we write \(E_{a}\) for the set of all sequences \(y=(y_{n})_{n\ge 1}\) such that \(y/a=(y_{n}/a_{n})_{n\ge 1}\in E\); in particular, \(c_{a}\) denotes the set of all sequences y such that y/a converges. In this paper, we use the sum operator \(\Sigma \), defined by \(\Sigma _{n}y=\sum _{k=1}^{n}y_{k}\) for all sequences y, and we determine its spectrum over each of the sets \(s_{a}=(\ell _{\infty })_{a}\) and \(s_{a}^{0}=(c_{0})_{a}\). Then we determine the point, residual and continuous spectra of the operator \(D_{1/R}\Sigma D_{R}\), with \(R>1\), and we solve the special sequence spaces inclusion equations (SSIE), (which are determined by an inclusion, for which each term is a sum or a sum of products of sets of the form \((E_{a})_{\mathcal {T}}\) and \(( E_{f(x)})_{\mathcal {T}}\) where f maps \(U^{+}\) to itself, E is any linear space of sequences and \(\mathcal {T}\) is a triangle) \(D_{x}*(s_{R}^{0})_{\Sigma -\lambda I}\subset s_{R}^{0}\), using the fine spectrum of this operator. The solvability of this (SSIE) consists in determining, for each \(\lambda \in \mathbb {C}\), the set of all sequences \(x\in \omega \) that satisfy the next statement. For every \(y\in \omega \), we have

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{R^{n}}\left( \sum _{k=1}^{n-1}y_{k}-\lambda y_{n}\right) =0\Longrightarrow \lim _{n\rightarrow \infty }x_{n}\left( \frac{y_{n}}{R^{n}}\right) =0\text {.} \end{aligned}$$

Then, we solve this (SSIE) for \(R=1\). Finally, we solve each (SSIE) \(D_{x}*( E_{R})_{\Sigma -\lambda I}\subset s_{R}\), where E is successively equal to \(c_{0}\), c, and \(\ell _{\infty }\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信