{"title":"坎纳潘函数方程在半群上的扩展","authors":"Youssef Aserrar, Elhoucien Elqorachi","doi":"10.1007/s00233-024-10460-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>S</i> be a semigroup, <i>Z</i>(<i>S</i>) the center of <i>S</i>. In this paper, we determine the complex-valued solutions of Kannappan–d’Alembert’s functional equation </p><span>$$\\begin{aligned}\\displaystyle \\int _{S} f(xyt)d\\mu (t) +\\displaystyle \\int _{S} f(\\sigma (y)xt)d\\mu (t)= 2f(y)f(x),\\ x,y\\in S,\\end{aligned}$$</span><p>and Kannappan–Wilson’s functional equation </p><span>$$\\begin{aligned}\\displaystyle \\int _{S} f(xyt)d\\mu (t) +\\displaystyle \\int _{S} f(\\sigma (y)xt)d\\mu (t)= 2f(y)g(x),\\ x,y\\in S,\\end{aligned}$$</span><p>where <span>\\(\\mu \\)</span> is a measure that is a linear combination of Dirac measures <span>\\((\\delta _{z_i})_{i\\in I}\\)</span>, such that <span>\\(z_i\\in Z(S)\\)</span> for all <span>\\(i\\in I\\)</span>, and <span>\\(\\sigma :S\\rightarrow S\\)</span> is an involutive automorphism or an involutive anti-automorphism for the first equation and an involutive automorphism for the second one. We also give some interesting applications.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of Kannappan’s functional equation on semigroups\",\"authors\":\"Youssef Aserrar, Elhoucien Elqorachi\",\"doi\":\"10.1007/s00233-024-10460-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>S</i> be a semigroup, <i>Z</i>(<i>S</i>) the center of <i>S</i>. In this paper, we determine the complex-valued solutions of Kannappan–d’Alembert’s functional equation </p><span>$$\\\\begin{aligned}\\\\displaystyle \\\\int _{S} f(xyt)d\\\\mu (t) +\\\\displaystyle \\\\int _{S} f(\\\\sigma (y)xt)d\\\\mu (t)= 2f(y)f(x),\\\\ x,y\\\\in S,\\\\end{aligned}$$</span><p>and Kannappan–Wilson’s functional equation </p><span>$$\\\\begin{aligned}\\\\displaystyle \\\\int _{S} f(xyt)d\\\\mu (t) +\\\\displaystyle \\\\int _{S} f(\\\\sigma (y)xt)d\\\\mu (t)= 2f(y)g(x),\\\\ x,y\\\\in S,\\\\end{aligned}$$</span><p>where <span>\\\\(\\\\mu \\\\)</span> is a measure that is a linear combination of Dirac measures <span>\\\\((\\\\delta _{z_i})_{i\\\\in I}\\\\)</span>, such that <span>\\\\(z_i\\\\in Z(S)\\\\)</span> for all <span>\\\\(i\\\\in I\\\\)</span>, and <span>\\\\(\\\\sigma :S\\\\rightarrow S\\\\)</span> is an involutive automorphism or an involutive anti-automorphism for the first equation and an involutive automorphism for the second one. We also give some interesting applications.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10460-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10460-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 S 是半群,Z(S) 是 S 的中心。在本文中,我们确定了 Kannappan-d'Alembert 函数方程 $$\begin{aligned}\displaystyle \int _{S} f(xyt)d\mu (t) +\displaystyle \int _{S} f(\sigma (y)xt)d\mu (t)= 2f(y)f(x),\x,y\in S. 的复值解、\end{aligned}$$and Kannappan-Wilson's functional equation $$begin{aligned}\displaystyle \int _{S} f(xyt)d\mu (t) +\displaystyle \int _{S} f(\sigma (y)xt)d\mu (t)= 2f(y)g(x),\x、yin S,\end{aligned}$$其中 \(\mu \)是一个度量,它是狄拉克度量的线性组合 \((\delta _{z_i})_{i\in I}\), such that \(z_i\in Z(S)\) for all \(i\in I\), and\(\sigma :)对于第一个等式来说是一个渐开自变或渐开反自变,对于第二个等式来说是一个渐开自变。我们还给出了一些有趣的应用。
where \(\mu \) is a measure that is a linear combination of Dirac measures \((\delta _{z_i})_{i\in I}\), such that \(z_i\in Z(S)\) for all \(i\in I\), and \(\sigma :S\rightarrow S\) is an involutive automorphism or an involutive anti-automorphism for the first equation and an involutive automorphism for the second one. We also give some interesting applications.