施瓦茨反射、B-旋转和代数对应的一般动力学理论

Yusheng Luo, Mikhail Lyubich, Sabyasachi Mukherjee
{"title":"施瓦茨反射、B-旋转和代数对应的一般动力学理论","authors":"Yusheng Luo, Mikhail Lyubich, Sabyasachi Mukherjee","doi":"arxiv-2408.00204","DOIUrl":null,"url":null,"abstract":"In this paper, we study matings of (anti-)polynomials and Fuchsian,\nreflection groups as Schwarz reflections, B-involutions or as\n(anti-)holomorphic correspondences, as well as their parameter spaces. We prove\nthe existence of matings of generic (anti-)polynomials, such as periodically\nrepelling, or geometrically finite (anti-)polynomials, with circle maps arising\nfrom the corresponding groups. These matings emerge naturally as degenerate\n(anti-)polynomial-like maps, and we show that the corresponding parameter space\nslices for such matings bear strong resemblance with parameter spaces of\npolynomial maps. Furthermore, we provide algebraic descriptions for these\nmatings, and construct algebraic correspondences that combine generic\n(anti-)polynomials and genus zero orbifolds in a common dynamical plane,\nproviding a new concrete evidence to Fatou's vision of a unified theory of\ngroups and maps.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general dynamical theory of Schwarz reflections, B-involutions, and algebraic correspondences\",\"authors\":\"Yusheng Luo, Mikhail Lyubich, Sabyasachi Mukherjee\",\"doi\":\"arxiv-2408.00204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study matings of (anti-)polynomials and Fuchsian,\\nreflection groups as Schwarz reflections, B-involutions or as\\n(anti-)holomorphic correspondences, as well as their parameter spaces. We prove\\nthe existence of matings of generic (anti-)polynomials, such as periodically\\nrepelling, or geometrically finite (anti-)polynomials, with circle maps arising\\nfrom the corresponding groups. These matings emerge naturally as degenerate\\n(anti-)polynomial-like maps, and we show that the corresponding parameter space\\nslices for such matings bear strong resemblance with parameter spaces of\\npolynomial maps. Furthermore, we provide algebraic descriptions for these\\nmatings, and construct algebraic correspondences that combine generic\\n(anti-)polynomials and genus zero orbifolds in a common dynamical plane,\\nproviding a new concrete evidence to Fatou's vision of a unified theory of\\ngroups and maps.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了(反)多项式和福氏反射群作为施瓦茨反射、B-卷或作为(反)全态对应的匹配,以及它们的参数空间。我们证明了一般(反)多项式(如周期repelling)或几何有限(反)多项式与由相应群产生的圆映射的匹配关系的存在。这些匹配作为退化的类(反)多项式映射自然出现,我们证明这些匹配的相应参数空间与多项式映射的参数空间非常相似。此外,我们还提供了这些配位的代数描述,并构建了代数对应关系,将一般(反)多项式与零属轨道结合在一个共同的动力学平面上,为法图的群与映射统一理论的愿景提供了新的具体证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general dynamical theory of Schwarz reflections, B-involutions, and algebraic correspondences
In this paper, we study matings of (anti-)polynomials and Fuchsian, reflection groups as Schwarz reflections, B-involutions or as (anti-)holomorphic correspondences, as well as their parameter spaces. We prove the existence of matings of generic (anti-)polynomials, such as periodically repelling, or geometrically finite (anti-)polynomials, with circle maps arising from the corresponding groups. These matings emerge naturally as degenerate (anti-)polynomial-like maps, and we show that the corresponding parameter space slices for such matings bear strong resemblance with parameter spaces of polynomial maps. Furthermore, we provide algebraic descriptions for these matings, and construct algebraic correspondences that combine generic (anti-)polynomials and genus zero orbifolds in a common dynamical plane, providing a new concrete evidence to Fatou's vision of a unified theory of groups and maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信