{"title":"基于对称内部惩罚非连续伽勒金方法的一种半线性椭圆问题多网格方法","authors":"Fan Chen, Ming Cui, Chenguang Zhou","doi":"10.1002/num.23130","DOIUrl":null,"url":null,"abstract":"This article introduces a new kind of multigrid approach for semilinear elliptic problems, which is based on the symmetric interior penalty discontinuous Galerkin (SIPDG) method. We first give an optimal error estimate of the SIPDG method for the problem. Then, we design a type of multigrid method, which is called the multilevel correction method, and derive a priori error estimates. The primary idea of this method is to take the solution of the semilinear problem and utilize it to establish a sequence of solutions for associated linear boundary value problem on discontinuous finite element spaces and a newly defined low dimensional augmented subspace. Lastly, numerical experiments are offered to confirm the suggested method's precision and effectiveness.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"81 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A type of multigrid method for semilinear elliptic problems based on symmetric interior penalty discontinuous Galerkin method\",\"authors\":\"Fan Chen, Ming Cui, Chenguang Zhou\",\"doi\":\"10.1002/num.23130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a new kind of multigrid approach for semilinear elliptic problems, which is based on the symmetric interior penalty discontinuous Galerkin (SIPDG) method. We first give an optimal error estimate of the SIPDG method for the problem. Then, we design a type of multigrid method, which is called the multilevel correction method, and derive a priori error estimates. The primary idea of this method is to take the solution of the semilinear problem and utilize it to establish a sequence of solutions for associated linear boundary value problem on discontinuous finite element spaces and a newly defined low dimensional augmented subspace. Lastly, numerical experiments are offered to confirm the suggested method's precision and effectiveness.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23130\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23130","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A type of multigrid method for semilinear elliptic problems based on symmetric interior penalty discontinuous Galerkin method
This article introduces a new kind of multigrid approach for semilinear elliptic problems, which is based on the symmetric interior penalty discontinuous Galerkin (SIPDG) method. We first give an optimal error estimate of the SIPDG method for the problem. Then, we design a type of multigrid method, which is called the multilevel correction method, and derive a priori error estimates. The primary idea of this method is to take the solution of the semilinear problem and utilize it to establish a sequence of solutions for associated linear boundary value problem on discontinuous finite element spaces and a newly defined low dimensional augmented subspace. Lastly, numerical experiments are offered to confirm the suggested method's precision and effectiveness.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.